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Abstract

We extend the notion of immunity to closed sets and to Π0
1 classes

in particular in two ways: immunity meaning the corresponding tree
has no infinite computable subset, and tree-immunity meaning it has
no infinite computable subtree. We separate these notions from each
other and that of being special, and show separating classes for com-
putably inseparable c.e. sets are immune and perfect thin classes are
tree-immune. We define the notion of prompt immunity and con-
struct a positive-measure promptly immune Π0

1 class. We show that
no immune-free Π0

1 class P cups to the Medvedev complete class
DNC of diagonally noncomputable sets, where P cups to Q in the
Medvedv degrees of Π0

1 classes if there is a class R such that the
product P ⊗R ≡M Q. We characterize the interaction between (tree-
)immunity and Medvedev meet and join, showing the (tree-)immune
degrees form prime ideals in the Medvedev lattice. We show that
every random closed set is immune and not small, and every small
special class is immune.
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1 Introduction

The notion of a simple c.e. set and the corresponding complementary notion
of an immune co-c.e. set are fundamental to the study of c.e. sets and
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degrees. Together with variations and related notions such as effectively
immune, promptly simple, hyperimmune and so forth, they permeate the
classic text of R. I. Soare [21] and its updated version.

Many of the results on c.e. sets and degrees have found counterparts in
the study of effectively closed sets (Π0

1 classes). See the surveys [12, 11] for
examples. In particular, hyperhyperimmune co-c.e. sets correspond to thin
Π0

1 classes [7, 10, 14] and hyperimmune co-c.e. sets correspond to several
different notions including smallness studied by Binns [3, 4].

In this paper we consider the notion of immune sets as applied to Π0
1

classes and closed sets in general. We work in 2N with the topology gener-
ated by basic clopen sets called intervals. For any σ ∈ {0, 1}∗ the interval
I(σ) is {X : σ ≺ X}, where ≺ means initial segment. Notation is standard;
we note that λ denotes the empty string, σ�n is the initial segment of σ of
length n, and if T ⊆ {0, 1}∗ is a tree (i.e., it is closed under initial segment),
[T ] ⊆ 2N denotes the set of infinite paths through T . A node σ ∈ T is a
leaf of T if σai /∈ T for any i. For any set P ⊆ 2N, we may define the tree
TP = {σ ∈ {0, 1}∗ : I(σ)∩P 6= ∅}; the closed sets P ⊆ 2N are exactly those
for which P = [TP ]. A Π0

1 class is a closed set for which some computable
tree T ⊇ TP has [T ] = P ; in this case TP is a Π0

1 set. For any tree T , let
Ext(T ) be the set of nodes of T which have an infinite extension in [T ], so
if P = [T ], Ext(T ) = TP .

A partial computable functional Φ : 2N → 2N is given by a computable
representation ϕ : {0, 1}∗ → {0, 1}∗ such that σ ≺ τ implies ϕ(σ) � ϕ(τ);
Φ(X) is defined when

⋃
n ϕ(X�n) is infinite, and in that case they are equal.

Similar representations hold for functions on NN.
An infinite set C ⊆ ω is called immune if it does not include any infinite

c.e. subset, or equivalently if it has no infinite computable subset. A c.e.
set which is the complement of an immune set is simple.

Definition 1.1. Let P be a closed subset of 2N.

1. P is immune if TP is immune.

2. P is tree-immune if TP has no infinite computable subtree.

It is easy to see that an immune closed set must be tree-immune, and
both must be special ; i.e., have no computable paths. In § 2 we separate
all three notions. We also show that the class of separating sets S(A,B)
for any pair of computably inseparable sets A and B is immune and that
any perfect thin Π0

1 class is tree-immune. We define the notion of prompt
immunity and construct an example of a Π0

1 class of positive measure which
is promptly immune.

In § 3, we consider connections between immunity and Binns’ notion of
smallness [3]. We show that every special hyperimmune Π0

1 class is tree-
immune and that every small special Π0

1 class is immune. In § 4, we consider



Immunity and Non-Cupping for Closed Sets 81

connections with the Medvedev degrees of difficulty [16, 19]. We show that
for closed sets P and Q, the meet P ⊕ Q is (tree-)immune if and only if
both P and Q are (tree-)immune, whereas the join P ⊗Q is (tree-)immune
if and only if at least one of P and Q are (tree-)immune. We show that
for any Π0

1 class P with no computable element, there is a non-immune Π0
1

class Q with no computable element which is Medvedev reducible to P . In
§ 5, we show that no immune-free degree cups to any generalized separating
class (in the sense of Cenzer and Hinman [9]), and hence every immune-free
Medvedev degree is non-cuppable.

In § 6, we show that any random closed set (in the sense of [1]) is immune.
We also show that any random closed set is not small.

2 Immunity for Π0
1 classes

We begin with two useful characterizations of immunity.

Lemma 2.1. A closed set P is immune if and only if TP has no infinite c.e.
subtree.

Proof. Certainly if TP has an infinite c.e. subtree, then it has an infinite
computable subset. For the converse, let S ⊆ TP be an infinite computable
subset and define the tree T by

σ ∈ T ⇐⇒ (∃τ ∈ S)σ � τ.

Then T is an infinite c.e. subtree of TP . q.e.d.

Theorem 2.3 shows we cannot ensure that every infinite c.e. tree has an
infinite computable subtree.

Lemma 2.2. P is not immune if and only if there is a computable sequence
{σn : n ∈ ω} such that σn ∈ TP ∩ {0, 1}n for each n.

Proof. The reverse implication is immediate. Now suppose that C is an
infinite computable subset of TP and enumerate C as {τ0, τ1, . . . }. Observe
that C must have arbitrarily long elements and define σn to be τi�n, where
i is the least such that |τi| ≥ n. q.e.d.

It is clear any immune class is tree-immune, and any tree-immune class
is special. The following results show that neither implication reverses.

Theorem 2.3. There exists a tree-immune Π0
1 class P that is not immune.

Proof. Let Se be the eth computable tree, with characteristic function ϕe :
{0, 1}∗ → {0, 1}. We shall say that Se has height ≥ m at stage s if ϕe,s(σ)
is defined for all σ ∈ {0, 1}m and Se has at least one node of length m.
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We shall build a sequence of nested computable trees Ts such that TP =⋂
s Ts and a prefix-free infinite c.e. set A such that As = {σ0, . . . , σs} ⊆

Ext(Ts) and |σs| > s. We have the following requirements:

Ne : |Se| = ∞ ⇒ Se * TP .

Each Ne has an associated ms(e), the minimum height of Se required before
we act for Ne. For all e, m0(e) = 2e+ 1.

To meet a single requirement N0 we wait until the stage s when S0

attains height ≥ 1 (= m0(0)). Then we choose the leftmost τ in S0 ∩{0, 1},
letms(0) = 1+max{|σi| : i < s}, and choose all σt, t ≥ s, to be incompatible
with τ . Then at stage t > s when S0 reaches height ≥ ms(0), we choose
τ ′ ∈ Se∩{0, 1}ms(0) extending τ and let Tt+1 be the result of removing from
Tt all extensions of τ ′. If Se has no extensions of τ of length ms(0), then if
τ = 1, or τ = 0 but 1 /∈ Se, we abandon N0, as Se is finite. Otherwise we
reset τ to 1 and mt(0) = 1 + max{|σi| : i < t} and wait again, avoiding the
cone above the new τ (and no longer avoiding the old) in future σi choices.

The same module holds for all other requirements; we maintain a set R
of bases of cones that must be avoided by A. Each ms(e) changes its value
at most 22e+1 times, and the values it takes on are sufficiently large that
standard measure arguments show we always have room to choose new σi

nodes and maintain their extendibility.
Stage 0. For all e, we let m0(e) = 2e+ 1; A0 = R0 = ∅; T0 = {0, 1}∗.
Stage s > 0.

Step 1. For each e ≤ s such that Se has height ≥ 2e+1 newly at stage
s, set ms(e) = 2e + 1 + max{|σi| : i < s} and set τe to the leftmost string
in Se ∩ {0, 1}e+1. Enumerate all such τe into Rs.

Step 2. For each e ≤ s such that ms−1(e) > 2e + 1, Se has height
ms−1(e) newly at s, and Se ∩ {0, 1}ms−1(e) ⊆ Ts−1, if there exists a string
τ � τe in Se ∩ {0, 1}ms−1(e) remove the leftmost such from Ts. If there
does not exist such a τ , remove τe from Rs. If τe is the rightmost string
in Ss ∩ {0, 1}2e+1, do nothing. Otherwise choose the leftmost of the strings
to the right of τe, label it the new τe, put this new τe into Rs, and set
ms(e) = 2e+ 1 + max{|σi| : i < s}.

Step 3. For any e not treated above, let ms(e) = ms−1(e); let Ts be
Ts−1 minus the strings removed in the previous step (if any) and all their
extensions.

Step 4. Finally, let Q be the part of Ts uncovered by A and R, i.e.,

Q = Ts − {τaρ : τ ∈ As−1 ∪Rs, ρ ∈ {0, 1}∗}.

Note that since we only remove strings from T that are within the intervals
of permanent members of R, we would get the same Q if we replaced Ts
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with {0, 1}∗. Choose the leftmost σ ∈ Q of length at least s + 2 and let it
be σs ∈ As.

To verify the construction works, first note every σi has an extension
by a straightforward measure argument: we remove at most one node τ on
behalf of each Se, and for any i such that τ � σi, we ensure µ(I(τ)) ≤
2−2e−1−|σi|. The sum of the measure removed from any I(σi) is hence
bounded by 2

3µ([σi]).
Another measure argument shows there is always enough room in Q to

choose a new string in A without covering all of Ts. Since each Se has at
most one node in R at a time, the measure of Q at stage s is at least

x = 1−
s∑

e=0

2−2e−1 −
s−1∑
i=1

2−i−2,

which we need to be greater than (at most) 2−s−2. It is easily checked that
x− 2−s−2 is

1
12

+
1

3 · 22s+1
+

1
2s+2

,

which is clearly positive.
Since it is clear that the requirements are met, P is a Π0

1 class, and
A ⊂ TP is computable, the proof is complete. q.e.d.

Theorem 2.4. There is a special Π0
1 class that is not tree-immune.

Proof. This is a corollary of Theorem 4.8; any Q∗ where Q is special is also
special but not tree-immune. q.e.d.

The next results show many Π0
1 classes of interest are immune. Recall

S(A,B) denotes the class of separating sets for A and B (all C such that
A ⊆ C and B ∩ C = ∅); it is a closed set, and when A and B are c.e. it is
a Π0

1 class.

Proposition 2.5. If A and B are computably inseparable, then S(A,B) is
immune.

Proof. Suppose that W ⊂ TS(A,B) is an infinite c.e. set, enumerated without
repetition as σ0, σ1, . . . . Note that for any σ ∈ W and any n < |σ|, n ∈ A
implies that σ(n) = 1 and n ∈ B implies that σ(n) = 0. Since W must have
elements of arbitrary length, we may computably define i(n) to be the least
i such that |σi| > n, and let X(n) = σi(n)(n) to compute a separating set
for A and B. q.e.d.

The notion of a thin Π0
1 class corresponds to that of a hyperhyperim-

mune set and has been studied extensively by many researchers in articles
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including [7, 10, 14]. A Π0
1 class P is thin if for any Π0

1 class Q ⊂ P , there
is a clopen set U such that Q = P ∩U . This is equivalent to saying that the
family of Π0

1 subsets of P is complemented, that is, for any Π0
1 class Q ⊂ P ,

P \Q is also a Π0
1 class. Since any hyperhyperimmune set is also immune,

the following result is natural.

Proposition 2.6. If P is a perfect thin Π0
1 class, then P is tree-immune.

Proof. Let P be perfect thin (and therefore having no computable member)
and suppose that some infinite computable tree W ⊆ TP . Let L be the set
of leaves of W , that is

L = {σ ∈W : σa0 /∈W & σa1 /∈W}.

Then the elements of L are pairwise incomparable and, since P has no
computable elements, L is infinite. To see this, note that if L were finite,
then Ext(W ) would be computable and thus W would have a computable
element (in particular the leftmost path), which would also belong to P .
That is, suppose that L were finite and let m be the maximum length of a
node in L, then, for any σ,

σ ∈ Ext(W ) ⇐⇒ (∃τ ∈W ∩ {0, 1}m+1)σ ≺ τ.

Note that for each σ ∈ L, σ ∈ TP . Now we can partition P into the subsets

P0 = {X ∈ P : (∀n)Xdn /∈ L} and

P1 = {X ∈ P : (∃n)Xdn ∈ L}.

Note that P0 is a Π0
1 class and therefore, since P is thin, P1 is also a

Π0
1 class.

Let L = {σ0, σ1, . . . } and observe that the closed set P1 is covered by the
family {I(σi) : i ∈ ω}. It follows by compactness that P1 ⊆ I(σ0)∪· · ·∪I(σk)
for some finite k. But this contradicts the fact that every σi ∈ TP and that
the σis are pairwise incomparable. q.e.d.

A c.e. set A is called promptly simple if for some enumeration {An}n∈N
of A there is a computable function π such that for any infinite c.e. set
We ⊆ N there are n, s with n ∈We,s+1 −We,s and n ∈ Aπ(s).

For P a Π0
1 class, let T be a computable tree giving P . For each s, let

Ts be the collection of nodes of T which have length-s extensions in T . Let
{σn}n∈N = {λ, 0, 1, 00, 01, 10 . . .} denote the length-lexicographical ordering
of the elements of {0, 1}∗. We say that P is promptly immune if there is a
computable function π such that for any infinite c.e. set W , there exist n, s
such that

n ∈Ws+1 −Ws & σn /∈ Tπ(s).
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There exist Π0
1 classes with positive measure which have no computable

elements. The next result is an improvement on this.

Theorem 2.7. There exists a Π0
1 class P of positive measure which is

promptly immune.

Proof. We define the Π0
1 class P = [T ] in stages Ts and let T =

⋂
s Ts. The

class P will be promptly immune via the function π(s) = s + 1. For each
e, we shall wait for some n such that |σn| > 2e to come into We at stage
s+ 1 and then remove σn from Ts+1 by removing σn and all extensions (if
any) from T . Initially T0 = {0, 1}∗. After stage s, we shall have satisfied
some of the requirements. At stage s+ 1, we look for the least e ≤ s which
has not yet been satisfied and such that some suitable n ∈ We,s+1 −We,s.
We meet this requirement by setting Ts+1 = Ts − {τ : σn � τ}. Note
that this action removes from [T ] a set of measure ≤ 2−2e−1, so that the
total measure removed is less than or equal to

∑
e 2−2e−1 = 2

3 . It follows
that Ts 6= ∅ for any s and therefore P = [T ] is not empty, and in fact has
measure at least 1

3 . q.e.d.

3 Smallness and Hyperimmunity

In this section, we compare immunity with other “smallness” notions for Π0
1

classes. Some definitions are needed.
There is a one-to-one correspondence between the set of natural numbers

and the set of finite subsets of natural numbers, given as follows. For any
n > 0, let n be uniquely expressed in binary form as n =

∑k
j=1 2ej for some

finite sequence e1 < e2 < · · · < ek; the finite set {e1, . . . , ek} is denoted
by Dn and n is its canonical index. We set D0 = ∅. For any computable
function f , the sequence Df(n) is called a strong array ; it is called disjoint
if the sets Df(n) are pairwise disjoint.

A set C ⊆ N is called hyperimmune if there is no disjoint strong array
〈Df(n)〉 such that, for all n, Df(n) ∩ C 6= ∅. A well-known theorem by
Kuznecov, Medvedev, and Uspenski [21, V.2.3] states that C = {c0 < c1 <
. . . } is hyperimmune if and only if there is no infinite computable function
g such that g(n) > cn for all n.

A finite string σ ∈ {0, 1}n has Gödel number
∑n

i=0 σ(i)2i. If F is a
finite set of (Gödel numbers of) strings, then F ∗ =

⋃
{I(σ) : σ ∈ F}. Binns

[4] called a sequence 〈Df(n)〉 of finite sets of (Gödel numbers of) strings a
disjoint strong array if the sets D∗

f(n) are pairwise disjoint.

Definition 3.1. 1. (Binns [3]). A closed set P is small if there is no
computable function g such that, for all n, we have card({0, 1}g(n) ∩
TP ) > n.

2. (Binns [4]). A closed set P is hyperimmune if there is no disjoint
strong array 〈Df(n)〉 such that P ∩D∗

f(n) 6= ∅ for all n.
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Binns [4] showed that the class DNC2 of diagonally non-computable
functions is not small, and in fact not hyperimmune. By Proposition 2.5,
this gives an example of an immune class of measure 0 which is not small.
It is also easy to see that a class of positive measure cannot be small, so the
immune class of Theorem 2.7 is also not small.

For any tree T ⊆ {0, 1}∗, we say that σ is a branching node of T if both
σa0 and σa1 are in T ; let Br(T ) denote the set of branching nodes of T .

Theorem 3.2 (Binns [3]). A Π0
1 class P is small if and only if Br(TP ) is

hyperimmune.

Theorem 3.3 (Binns [4]). Every small Π0
1 class is hyperimmune.

The converse to Theorem 3.3 does not hold. It is not clear whether
every special hyperimmune Π0

1 class must be immune, because the nodes
witnessing immunity need not be incomparable. However, we have the
following result.

Theorem 3.4. Every special hyperimmune Π0
1 class is tree-immune.

Proof. Assume P is not tree-immune, and let T ⊆ TP be a computable tree.
Since P is special, T has an infinite, computable set L = {σ0, σ1, . . . } of
leaves. Then we may define a disjoint strong array

Df(n) = {σn}.

Hence P is not hyperimmune. q.e.d.

Cenzer, Weber, and Wu [13] asked whether every small special Π0
1 class

is immune. We can now answer this question.

Theorem 3.5. Every small special Π0
1 class is immune.

Proof. Suppose that P is special and small but not immune, and let T ⊆ TP

be an infinite c.e. subtree.

Claim 3.6. The set Br(T ) is infinite.

Proof. Suppose by way of contradiction that Br(T ) is finite and let s be
the maximum length of any σ ∈ Br(T ). It follows that any node in T of
length ≥ s must extend one of the finite set of nodes of length s. Since
T is infinite, there must be a single node τ ∈ T which has infinitely many
extensions in T . Since there is no branching above τ , all of those extensions
are comparable, so that there is a unique infinite path X in T through τ .
Since T is c.e., we may compute the path X as follows. Given i, enumerate
the elements of T until we find a string σ with |σ| ≥ i which is comparable
with τ and then X(i) = σ(i). This violates the assumption that P is
special. q.e.d. (Claim 3.6)
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Now Br(T ) is itself a c.e. set, since we can enumerate σ ∈ Br(T ) once
σ, σa0, and σa1 have all been enumerated into T . Hence Br(T ) has an
infinite, increasing computable subset and is certainly not hyperimmune. It
follows that the larger set Br(TP ) is also not hyperimmune, so by Theorem
3.2, P is not small. q.e.d.

4 Degrees of Difficulty

Π0
1 classes are often viewed as collections of solutions to some mathematical

problem. Muchnik and Medvedev reducibility, defined for closed subsets of
2N and indeed NN in general, order classes based on this viewpoint. The
class A is Muchnik (a.k.a. weakly) reducible to the class B (A ≤w B) if
for every X ∈ B there is Y ∈ A such that Y ≤T X [17]. The class A
is Medvedev (a.k.a. strongly) reducible to B (A ≤s B) if there is a single
Turing reduction procedure which, when given any element ofB as an oracle,
computes an element of A; it is exactly the uniformization of Muchnik
reduction [16]. These reductions have been studied extensively by Binns
(e.g., [2]), Cenzer and Hinman [8, 9] and Simpson (e.g., [20]) and have
connections to randomness [18]. We shall need the result from [8] that any
partial computable Φ : P → Q for two Π0

1 classes P and Q may be extended
to a total computable functional. The Medvedev degrees are equivalence
classes under P ≡s Q, defined as (P ≤s Q) & (Q ≤s P ), and similarly for
the Muchnik degrees. Let Ps denote the partial ordering of the Medvedev
degrees of Π0

1 classes.

Proposition 4.1. If P is not (tree-)immune and Q is Medvedev reducible
to P then Q is also not (tree-)immune.

Proof. Let P be a Π0
1 class which is not tree-immune, and V ⊆ TP an

infinite computable tree. Let Φ witness Q ≤s P and set S = Φ(V ); note
that S is a tree. By the definition of partial computable functional and the
fact that Φ must be defined on all of P , S ⊆ TQ and S is infinite. It remains
to show S is computable.

To determine whether τ ∈ S, compute ϕ(σ) for all σ ∈ 2<ω in lexico-
graphical order until |ϕ(σ)| ≥ |τ | for all σ ∈ P of some length n. Then
τ ∈ S if and only if τ � ϕ(σ) for some σ ∈ V ∩ {0, 1}n.

If P is not immune, then there is an infinite c.e. tree V ⊆ TP and the
argument above shows that Φ(V ) is an infinite c.e. subtree of TQ, so that
Q is also not immune. q.e.d.

Let us say that a Medvedev degree d ∈ Ps is (tree-)immune if there is
some class P ∈ d which is (tree-)immune and otherwise d is (tree-)immune-
free.



88 D. Cenzer, T. Kihara, R. Weber, G. Wu

Corollary 4.2. 1. If d ∈ Ps contains a non-(tree-)immune Π0
1 class,

then d is (tree-)immune-free.

2. If d ∈ Ps contains a (tree-)immune Π0
1 class, then every member of d

is (tree-)immune.

For X,Y ∈ 2N, the join X ⊕ Y = Z is given by Z(2n) = X(n) and
Z(2n + 1) = Y (n). Similarly, for finite sequences σ and τ of equal length,
we may define σ ⊕ τ = ρ, where ρ(2n) = σ(n) and ρ(2n+ 1) = τ(n).

The quotient structure of the Π0
1 classes under either Muchnik or Medvedev

equivalence is a lattice, and both have the same join and meet operators.
The join of P and Q is given by

P ⊗Q = {X ⊕ Y : X ∈ P, Y ∈ Q}.

If P = [S] and Q = [T ], then P ⊗Q = [S ⊗ T ], where

S ⊗ T = {σ ⊕ τ, (σ ⊕ τ)i : σ ∈ S, τ ∈ T, |σ| = |τ |, i ∈ {0, 1}};

since all finite joins are of even length, we branch at odd levels. The meet
of P and Q is given by

P ⊕Q = {0aX : X ∈ P} ∪ {1aY : Y ∈ Q}.

If P = [S] and Q = [T ], then P ⊕Q = [S ⊕ T ], where

S ⊕ T = {0aσ : σ ∈ S} ∪ {1aτ : τ ∈ T}.

Binns [4] showed that P ⊕Q and P ⊗Q are small if and only if both P
and Q are small. The results for immunity are not quite the same.

Theorem 4.3. For any closed sets P and Q, P ⊕Q is (tree-)immune if and
only if both P and Q are (tree-)immune.

Proof. Suppose first that P is not immune and let C ⊆ TP be an infinite
computable set. Then {0aσ : σ ∈ C} is a computable subset of TP⊕Q.
Supposing P is not tree-immune, let V ⊆ TP be an infinite computable
tree. Then {λ} ∪ {0aσ : σ ∈ V } is an infinite computable subtree of TP⊕Q.
The arguments when Q is not (tree-)immune are, of course, symmetric.

Next suppose that P ⊕Q is not immune and let C ⊆ TP⊕Q be an infinite
computable set. Let Ci = {σ : iaσ ∈ C} for i = 0, 1. Then C0 ⊆ TP ,
C1 ⊆ TQ and both sets are computable. Clearly either C0 is infinite or C1

is infinite, which implies that either P is not immune or Q is not immune.
A similar argument applies if P ⊕Q is not tree-immune, where V ⊆ TP⊕Q

is an infinite computable tree and the corresponding V0 ⊆ TP and V1 ⊆ TQ

are computable trees. q.e.d.
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Theorem 4.4. For any closed sets P and Q, P ⊗Q is (tree-)immune if and
only if at least one of P and Q is (tree-)immune.

Proof. Suppose first that P ⊗Q is not tree-immune and let V ⊆ TP⊗Q be
an infinite computable tree. Let

VP = {σ : (∃τ ∈ {0, 1}|σ|)(σ ⊕ τ ∈ V )}

and similarly
VQ = {τ : (∃σ ∈ {0, 1}|τ |)(σ ⊕ τ ∈ V )}.

Then VP is an infinite computable subtree of TP and VQ is an infinite
computable subtree of TQ, so that neither P nor Q is tree-immune. A
similar argument applies if P ⊗Q is not immune, where V , VP and VQ are
now infinite c.e. trees.

Next suppose that both P and Q are not tree-immune and let VP ⊆ TP

and VQ ⊆ Q be infinite computable trees. Then VP ⊗ VQ is an infinite
computable subtree of TP ⊗ TQ = TP⊕Q. A similar argument applies if P
are Q are both not immune, where VP , VQ and VP ⊗ VQ are all infinite c.e.
trees. q.e.d.

Corollary 4.5. The immune-free degrees and the tree-immune-free degrees
each form a prime ideal in the lattice Ps.

Corollary 4.6. The tree-immune-free Medvedev degrees form a proper
subideal of the immune-free Medvedev degrees.

Proof. Let d be the Medvedev degree of the tree-immune, non-immune Π0
1

class P constructed in Theorem 2.3. Then by Corollary 4.2, d is tree-
immune but immune-free. q.e.d.

We now turn to questions of density. Let 0s denote the least Medvedev
degree, which consists of all Π0

1 classes that have a computable member.
Binns has shown there is a nonsmall class of every nonzero Medvedev degree.
We have the following bounding result for nonimmune classes.

Theorem 4.7. For any nonzero Π0
1 class P , there is a Π0

1 class Q with
0s <s Q ≤s P which is not tree-immune, and hence not immune.

Proof. Let R be the Π0
1 class of Theorem 2.4 which is nonzero and not tree-

immune. It follows from Theorem 4.3 that P ⊕ R is not tree-immune, but
it is also special and certainly P ⊕R ≤s P . q.e.d.

Theorem 4.8. For every Π0
1 class Q, there exists a Π0

1 class Q∗ ≤s Q
such that Q∗ has tree-immune-free Medvedev degree, and Q∗ is Muchnik
equivalent to Q. Furthermore, if Q is immune, then Q∗ <s Q.
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Proof. The case that Q is not special is obvious. Let Q be a special Π0
1

class, and let T be a computable tree such that [T ] = Q. We note that the
set L of all leaves of T is computable. We set

T ∗ = T ∪ {σaτ : σ ∈ L & τ ∈ T}.

and let Q∗ = [T ∗], so that

Q∗ = Q ∪ {σaX : σ ∈ L & X ∈ Q}.

Then Q∗ is a Π0
1 class and Q ⊆ Q∗, so Q∗ ≤s Q. T is a computable subtree

of TQ∗ , so that Q∗ is not tree-immune, and hence by Corollary 4.2, Q∗ has
tree-immune-free degree. At the same time, every member of Q∗ is Turing
equivalent to a member of Q, so that Q∗ is Muchnik equivalent to Q.

If Q is immune, it follows from Proposition 4.1 that we may not have
Q ≤s Q

∗, since Q∗ is not immune. q.e.d.

Lemma 4.9 (Essentially by Simpson [19]). There exists a Medvedev com-
plete set Q and a computable function q such that, for any e, the eth Π0

1

class Pe is Medvedev reducible to Q via a computable functional Φq(e).

Remark 4.10. Every Medvedev complete set has this property.

Lemma 4.11. Let P ≤s Q be special Π0
1 classes, S and T computable trees

with [S] = P and [T ] = Q, and LS and LT the computable sets of all leaves
of S and T , respectively. Then there is a computable functional Φ∗ such
that Φ∗(Q) ⊆ P and Φ∗(LT ) ⊆ LS .

Proof. Since P is special, any σ ∈ S has an extension in LS . Assume P ≤s Q
via the computable functional Φ and let ϕ be a representing function for Φ.
We construct the desired functional Φ∗ with representing function ϕ∗.

First suppose τ ∈ 2<ω has no initial segment which is a leaf of T . If
ϕ(τ) ∈ S, then we let ϕ∗(τ) = ϕ(τ). If ϕ(τ) /∈ S, then we let σ be the
longest initial segment of ϕ(τ) which belongs to S, so that σ ∈ LS , and let
ϕ∗(τ) = σ. Note that if X ∈ Q, it follows that ϕ∗(X�n) = ϕ(X�n), so that
Φ∗(Q) ⊆ P as desired.

Next suppose that τ � σ for some leaf σ of T . If ϕ(σ) /∈ S, then as
above let ϕ∗(σ) be the longest initial segment of ϕ(σ) which belongs to S.
If ϕ(σ) ∈ S, let ϕ∗(σ) be the shortest and leftmost leaf of S which extends
ϕ(σ). Then let ϕ∗(τ) = ϕ∗(σ)a0|τ |−|σ|. It follows that ϕ∗ maps LT into
LS .

It is easy to check that ϕ∗ is monotonic and defines a computable func-
tional Φ∗. q.e.d.

Theorem 4.12. There is a greatest tree-immune-free Medvedev degree.
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Proof. Let Q be a Medvedev complete set, T a computable tree such that
Q = [T ] and Q∗ as defined in Theorem 4.8. Fix any non-tree-immune Π0

1

class P and let V ⊆ TP be an infinite computable tree. We may assume
that P has no computable path. By the Medvedev completeness of Q and
Lemma 4.11, [V ] ≤s Q via some computable functional Φ with representing
function ϕ such that ϕ maps LT into LV .

Let f be a computable function such that Pf(σ) = P ∩ I(σ) for all
σ ∈ LV , and observe that since V ⊆ TP , Pf(σ) is a nonempty subset of P .

We now construct a computable functional Ψ : Q∗ → P . Let X ∈ Q∗.
We define the partial output ψ(X�n) as follows. As long as ϕ(X�n) ∈ V ,
simply let ψ(X�n) = ϕ(X�n). If ϕ(X�n) ∈ V , but ϕ(X�n + 1) /∈ V , then
there exists σ ∈ LV with ϕ(X�n) � σ ≺ ϕ(X�n + 1). Furthermore, since
Φ : Q → [V ] and ϕ(X�n + 1) /∈ V , it follows that X /∈ Q. In this case, it
follows by the assumption from Lemma 4.11 that X�n + 1 ∈ LV . To see
this, let k be the least such that X�k ∈ LV . Then ϕ(X�k) = σ by the
assumption from Lemma 4.11 and the monotonicity of ϕ. Also k ≤ n since
ϕ(X�n+ 1) /∈ V and hence ϕ(X�n) = σ as well.

Now define Ψ(X) = Φq(f(σ))(X), where q is the function from Lemma
4.9. Since we know σ ≺ Φq(f(σ))(X), we can let ψ(X�n + r) = σ ∪
ϕq(f(σ))(X�n + r), that is, ψ(X�n + r) = σ if ϕq(f(σ))(X�n + r) � σ and
otherwise ψ(X�n+ r) = ϕq(f(σ))(X�n+ r). q.e.d.

Corollary 4.13. The c-immune-free Medvedev degrees forms a principal
prime ideal in Ps.

5 Non-Cupping

Cenzer-Weber-Wu [13] suggested the problem of determining the cuppable
Π0

1 classes in Ps. Here we say that an incomplete Π0
1 class P is cuppable if

there exists an incomplete Π0
1 class Q such that P⊗Q is Medvedev complete.

In general, P cups to R >s P if there exists Q <s R such that P ⊗Q ≡s R.
The first result in this direction is the following.

Theorem 5.1 (Simpson [19]). Any Π0
1 class that cups to a separating class

must have measure 0.

Hence, the positive measure Medvedev degrees POS form a subideal of
Medvedev non-cupping degrees NCup, and, by Theorem 2.7, a non-cuppable
promptly immune Π0

1 class exists. However, we shall observe a further
relationship between immunity and non-cuppability.

Recall for disjoint sets A,B, S(A,B) is the class of all separating sets
C ⊇ A, C ∩ B = ∅. In particular, DNC2 = S(A0, A1) where Ai = {e :
ϕe(e) = i}. A generalized separating class is the product

∏
n Fn where

{Fn}n∈ω is a computable sequence of finite subsets of N. For S(A,B) the
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set Fn = {0} if n ∈ B, {1} if n ∈ A and {0, 1} if n /∈ A ∪ B. Generalized
separating classes were studied by Cenzer and Hinman [9]. It is impor-
tant to note that any generalized separating class P is computably bounded
and hence is computably homeomorphic to a Π0

1 class Q ⊆ {0, 1}ω (see [6,
Lemma 1.3]). Hence the Medvedev degrees of the generalized separating
classes are included in the Medvedev degrees of subsets of Cantor space.

Theorem 5.2. No immune-free degree cups to any generalized separating
class.

Proof. Let P be an non-immune Π0
1 class and V ⊆ TP an infinite computable

set, with fixed enumeration {σi}i∈ω. Let S =
∏

n Fn be a generalized
separating class for a sequence {Fn}n∈ω of finite sets. Suppose that for
some Q, S ≤ P ⊗Q via a computable functional Φ. We shall write an input
X ⊕ Y to Φ as the ordered pair X,Y .

We construct a computable functional Ψ witnessing S ≤s Q. Given
Y ∈ Q, define Z = Ψ(Y ) as follows. For each n, let Z(n) = Φ(σi, Y )(n),
where i is the least such that Φ(σi, Y )(n) is defined. We know that such i
exists since, by compactness, there is some m such that |ϕ(σ, τ)| > n for all
σ ∈ TP , τ ∈ TQ with length ≥ m.

It remains to confirm that Z = Ψ(Y ) ∈ S; that is, Z(n) ∈ Fn for all
n. Given n and σi ∈ V such that Z(n) = Φ(σi, Y )(n), we can find X ∈ P
such that σi ≺ X (since σi ∈ TP ). It follows that Φ(X,Y ) ∈ S and hence
Φ(σi, Y )(n) = Φ(X,Y )(n) ∈ Fn. q.e.d.

Corollary 5.3. Every immune-free Medvedev degree is Medvedev non-
cuppable.

Proof. The class of 2-valued diagonally noncomputable functions, DNC2, is
a Medvedev complete generalized separating class, and hence no immune-
free degree can cup to it. q.e.d.

We get new subideals IM and TIM of Medvedev non-cuppable degrees
NCup, which consist of immune-free and tree-immune-free degrees, respec-
tively. However, immunity does not necessarily give a cupping property.
Actually, as seen before, a positive measure promptly immune degree in
Cenzer-Weber-Wu [13] is an example of a non-cuppable immune degree.

Corollary 5.4. A Muchnik complete Medvedev non-cuppable degree ex-
ists.

Proof. By Theorem 4.12, max TIM exists and it is clearly Muchnik complete
since it is degree-isomorphic to any Medvedev complete class. Moreover, it
is non-cuppable by Corollary 5.3. q.e.d.
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Theorem 5.5. For c = max TIM, a measure 0 immune non-cuppable degree
> c exists.

Proof. Let d be a positive measure, promptly immune Medvedev degree.
Then d 6≤ c holds since tree-immune-free degrees are downward closed. We
claim a = c ∪ d is the desired degree. This follows from the results that
immune degrees and non-cuppable degrees form ideals, positive measure-
free degrees form a filter, and d has positive measure-free degree by its
Muchnik completeness (see Simpson [19]). q.e.d.

Corollary 5.6. The immune-free Medvedev degrees IM and the tree-immune-
free Medvedev degrees TIM form proper subideals of the noncuppable Med-
vedev degrees NCup.

6 Immunity and randomness

Finally we consider the immunity of random closed sets. A closed set P
may be coded as an element of 3N; P is called random if that sequence is
Martin-Löf random (for background on randomness see [15]). The code of
P is defined from TP ; the nodes of TP are considered in order by length and
then lexicographically, and each one is represented in the code by 0, 1, or 2
according to whether the node has only the left child, only the right child,
or both children, respectively. Randomness for closed sets is defined and
explored in [1, 5], where it is shown among other results that no Π0

1 class
is random, and that no random closed set contains an f -c.e. path for any
computable f bounded by a polynomial. The following theorem does not
follow immediately but is not surprising.

Theorem 6.1. If P is a random closed set, then P is immune.

Proof. Fix a computable sequence C = (σ1, σ2, . . . ) such that |σn| = n for
each n. For n > 0, let Sn = {Q : (∀i ≤ n) σi ∈ TQ}. Then Sn is a
clopen set in the space of closed sets and the sequence {Sn : n ∈ ω} is
uniformly c.e. It is clear that C ⊆ TP if and only if P ∈ Sn for all n.
Now consider the Lebesgue measure µ(Sn). Certainly µ(S1) = 2/3. Given
µn = µ(Sn) and σn+1, let i ≤ n be the largest such that σi ≺ σn+1. Then
µn+1 = ( 2

3 )n+1−iµn ≤ 2
3µn. Hence µ(Sn) ≤ ( 2

3 )n for each n. It follows
that {S2n : n ∈ ω} is a Martin-Löf test and hence no random closed set
can belong to every Sn. Hence if P is random, C is not a subset of TP .
Since this holds for every such C, it follows that random closed sets are
immune. q.e.d.

Since a random ternary sequence must contain 1
3 2s in the limit, intu-

itively the tree it codes must branch too much to be small. This is a straight-
forward consequence of the following, which is drawn from [1, Lemma 4.5].
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Lemma 6.2. Let Q be a random closed set. Then there exist a constant
C ∈ N and k ∈ N such that for all m > k,

C

(
4
3

)m (
1−m− 1

4

)
< card(TQ ∩ {0, 1}m) < C

(
4
3

)m (
1 +m− 1

4

)
.

Corollary 6.3. If Q is a random closed set, Q is not small.

Proof. For C, k as in Lemma 6.2, define the function g(n) as

g(n) = max
{
k + 1,min

{
m : n < C

(
4
3

)m (
1−m− 1

4

)}}
.

It is clear that g is computable, and by Lemma 6.2, for all n the number of
branches at level g(n) will be at least n. q.e.d.
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