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Abstract

We investigate notions of randomness in the space C(2N) of continu-
ous functions on 2N. A probability measure is given and a version of the
Martin-Löf Test for randomness is defined. Random ∆0

2 continuous func-
tions exist, but no computable function can be random and no random
function can map a computable real to a computable real. The image of
a random continuous function is always a perfect set and hence uncount-
able. For any y ∈ 2N, there exists a random continuous function F with y
in the image of F . Thus the image of a random continuous function need
not be a random closed set. The set of zeroes of a random continuous
function is always a random closed set.
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1 Introduction

The study of algorithmic randomness has been of great interest in recent years.
The basic problem is to quantify the randomness of a single real number. Early
in the last century, von Mises [26] suggested that a random real should obey
reasonable statistical tests, such as having a roughly equal number of zeroes and
ones of the first n bits, in the limit. Thus a random real would be stochastic
in modern parlance. If one considers only computable tests, then there are
countably many such tests and one can construct a real satisfying all tests.

Martin-Löf [20] observed that stochastic properties could be viewed as special
kinds of measure zero sets and defined a random real as one which avoids certain
effectively presented measure 0 sets. That is, a real x ∈ 2N is Martin-Löf random
if for any effective sequence S1, S2, . . . of c.e. open sets with µ(Sn) ≤ 2−n,
x /∈ ∩nSn.

At the same time Kolmogorov [15] defined a notion of randomness for finite
strings based on the concept of incompressibility. For infinite words, the stronger
notion of prefix-free complexity developed by Levin [19], Gács [13] and Chaitin
[8] is needed. Schnorr later proved that the notions of Martin-Löf randomness
and Chaitin randomness are equivalent.

In a recent paper [2], the notion of randomness was extended to finite-
branching trees and effectively closed sets. It was shown that a random closed
set is perfect and contains no computable elements (in fact, it contains no n-c.e.
elements). Every random closed set has measure 0 and has Hausdorff dimension
log2

4
3 .

In this paper we want to consider algorithmic randomness on the space C(2N)
of continuous functions F : 2N → 2N.

Some definitions are needed. For a finite string σ ∈ {0, 1}n, let |σ| = n. For
two strings σ, τ , say that τ extends σ and write σ ≺ τ if |σ| ≤ |τ | and σ(i) = τ(i)
for i < |σ|. Similarly σ ≺ x for x ∈ 2N means that σ(i) = x(i) for i < |σ|. Let
σ!τ denote the concatenation of σ and τ and let σ!i denote σ!(i) for i = 0, 1.
Let x&n = (x(0), . . . , x(n− 1)). Two reals x and y may be coded together into
z = x⊕ y, where z(2n) = x(n) and z(2n + 1) = y(n) for all n.

For a finite string σ, let I(σ) denote {x ∈ 2N : σ ≺ x}. We shall call I(σ),
the interval determined by σ. Each such interval is a clopen set and the clopen
sets are just finite unions of intervals. We let B denote the Boolean algebra of
clopen sets.

Now a nonempty closed set P may be identified with a tree TP ⊆ {0, 1}∗
where TP = {σ : P ∩ I(σ) *= ∅}. Note that TP has no dead ends. That is, if
σ ∈ TP , then either σ!0 ∈ TP or σ!1 ∈ TP .

For an arbitrary tree T ⊆ {0, 1}∗, let [T ] denote the set of infinite paths
through T , that is,

x ∈ [T ] ⇐⇒ (∀n)x&n ∈ T.

Remmel partially supported by NSF grant 0400507.
Keywords: Computable analysis, computability, randomness
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It is well-known that P ⊆ 2N is a closed set if and only if P = [T ] for some tree
T . P is a Π0

1 class, or an effectively closed set, if P = [T ] for some computable
tree T . P is a strong Π0

2 class, or a Π0
2 closed set, if P = [T ] for some ∆0

2 tree.
The complement of a Π0

1 class is sometimes called a c.e. open set. We remark
that if P is a Π0

1 class, then TP is a Π0
1 set, but it is not, in general, computable.

There is a natural effective enumeration P0, P1, . . . of the Π0
1 classes and thus an

enumeration of the c.e. open sets. Thus we can say that a sequence S0, S1, . . .
of c.e. open sets is effective if there is a computable function, f , such that
Sn = 2N − Pf(n) for all n. For a detailed development of Π0

1 classes, see [5, 6].
The betting approach to randomness is formalized as follows:

Definition 1.1 (Ville [25]). (i) A martingale is a function d : n<N → [0,∞)
such that for all σ ∈ n<N,

d(σ) =
1
n

n−1∑

i=0

d(σ!i).

(ii) A martingale d succeeds on X ∈ nN if

lim sup
m→∞

d(X&m) = ∞.

That is, the betting strategy results in an unbounded amount of money
made on the binary string X.

(iii) The success set of d is the set S∞[d] of all sequences on which d succeeds.

That is, a martingale on 2<N is the representation of a fair double-or-nothing
betting strategy. When working on 3<N the strategy is triple-or-nothing.

Definition 1.2. A martingale d is constructive (effective, c.e.) if it is lower
semi-computable; that is, if there is a computable function d̂ : n<N × N → Q
such that

(i) for all σ and t, d̂(σ, t) ≤ d̂(σ, t + 1) < d(σ), and

(ii) for all σ, limt→∞ d̂(σ, t) = d(σ).

In other words, d(w) is approximated from below by rationals uniformly in
w. A sequence in 2N is considered random in this setting if no constructive
martingale succeeds on it.

Martin-Löf randomness for reals, as defined above, is extended to closed
sets by giving an effective homeomorphism with the space {0, 1, 2}N and simply
carrying over the notion of randomness from that space. A continuous function
F may be represented by an element of {0, 1, 2}N and is said to be Martin-Löf
random if it has a random representation.
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2 Random closed sets and continuous functions

We will define the notion of a random continuous function along similar lines
to the definition of a random closed set in [2]. The definition of a random
(nonempty) closed set P = [T ] (where T = TP ) comes from a probability
measure µ∗ where, given a node σ ∈ T , each of the following scenarios has equal
probability 1

3 :

σ!0 ∈ T and σ!1 ∈ T ,

σ!0 ∈ T and σ!1 /∈ T , and

σ!0 /∈ T and σ!1 ∈ T .

More formally, we define a measure µ∗ on the space C of closed subsets of 2N

as follows. Given a closed set Q ⊆ 2N, let T = TQ be the tree without dead ends
such that Q = [T ]. Let σ0,σ1, . . . enumerate the elements of T in order, first
by length and then lexicographically. We then define the code x = xQ = xT

by recursion such that for each n, x(n) = 2 if both σn
!0 and σn

!1 are in T ,
x(n) = 1 if σn

!0 /∈ T and σn
!1 ∈ T , and x(n) = 0 if σn

!0 ∈ T and σn
!1 /∈ T .

We then define a measure µ∗ on C by setting

µ∗(X ) = µ({xQ : Q ∈ X}) (1)

for X ⊆ C, where µ is the standard measure on {0, 1, 2}N. Then Brodhead,
Cenzer, and Dashti [2] defined a a closed set Q ⊆ 2N to be (Martin-Löf) random
if xQ is (Martin-Löf) random.

A continuous function on 2N is a function with a closed graph. Thus we
might simply say that a function F is random if the graph Gr(F ) is a random
closed set. Now Gr(F ) = {x ⊕ y : y = F (x)}. Thus if [T ] is the graph of a
function and σ ∈ T has even length, then we must have σ!0 ∈ T and σ!1 ∈ T .
This means that the family of closed sets which are the graphs of functions has
measure 0 in the space of closed sets and hence a random closed set will not be
the graph of a function. So we need a different measure to define randomness
for continuous functions.

For any continuous function F on 2N and any σ ∈ {0, 1}∗, there is a natural
number n and binary string τ of length n such that for all u ∈ I(σ), F (u)&n = τ .
In particular, F (u)(n) = τ(n) for every such u. In general, the length of σ
may be much larger than n, so we may have to extend σ by several bits to
get uniformity of F (u)&(n + 1) within the interval around σ’s extension. Thus
we recursively define a computation tree on {0, 1}∗ for F by attaching a label
f(σ) ∈ {0, 1, 2} to each node, as follows. The root node ∅ is left unlabeled. For
|σ| = m + 1, having defined f(σ&i) = ei for all i ≤ m, let ρ = (n1, . . . , nk) be
the result of deleting all 2s from (e1, . . . , em). If for all u ∈ I(σ), F (u)&k = ρ!j,
j ∈ {0, 1}, we may let em+1 = j. If not we must have em+1 = 2; even if so
we allow em+1 = 2. Thus for any continuous F there exist infinitely many
representing functions f : {0, 1}∗ → {0, 1, 2}. The representation which uses as
few 2s as possible we shall call the canonical representation. Finally, we want
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to code the representing function as an element of 3N to discuss its algorithmic
randomness. Enumerate {0, 1}∗ = {∅} as σ0,σ1, . . ., ordered first by length and
then lexicographically. Thus σ0 = (0), σ1 = (1), σ2 = (00), etc.

Definition 2.1. (i) Let INF equal the set of y ∈ {0, 1, 2}n such that {n :
y(n) *= 2} is infinite and, for y ∈ INF , let G(y) be the result of removing
from x all occurrences of 2.

(ii) A function f : {0, 1}∗ → {0, 1, 2} represents a function F : 2N → 2N if for
all x ∈ 2N, the sequence y, defined by y(n) = f(x&n) belongs to INF and
G(y) = F (x).

(iii) A sequence r ∈ {0, 1, 2}N represents the continuous function F (written
F = Fr) if the function fr : {0, 1}∗ → {0, 1, 2}, defined by fr(σn) = r(n),
represents F .

This representation may be given by a labelled tree, where the value f(σ)
is attached to the each node σ ∈ {0, 1}∗. For example, the identity function
can be represented by placing an e on any node σ which ends in e. This can
also be pictured geometrically as representing the graph of F as the intersection
of a decreasing sequence of clopen subsets of the unit square. Initially the
choice of f((0)) and f((1)) selects from the 4 quadrants. That is, for example,
f((0)) = (0) = f((1)) implies that the graph of F is included in the bottom half
of the square and f((0)) = ∅ and f((1)) = (1) implies that the graph excludes
the lower right hand quadrant. Successive values of f continue to restrict the
graph of F in a similar fashion.

Randomness for continuous functions is defined by using the Lebesgue mea-
sure on the space 3N of representations. Thus for each new bit of input, there is
equal probability 1

3 that fr gives a new output of 0 for Fr, gives a new output
of 1 for Fr, or gives no new output for Fr. This will induce a measure µ∗∗ on
the space F of continuous functions.

Definition 2.2. A function F : 2N → 2N is random if there is a sequence r ∈ 3N

such that r is random with respect to the measure µ∗∗.

Our first result will take care of the functions f which do not represent a
total function. The following lemma is needed.

Lemma 2.3. Let Σ be a finite set and let Q ⊆ ΣN be a Π0
1 class of measure 0.

Then no element of Q is Martin-Löf random.

Proof. Let Σ = {0, 1, 2} without loss of generality. Let Q = [T ] where T ⊆
{0, 1, 2}∗ is a computable tree (possibly with dead ends). For each n, let Tn =
T ∩ {0, 1, 2}n and let

Qn =
⋃

{I(σ) : σ ∈ Tn}.

Let g(n) = µ(Qn) = |Tn|
3n . Then g(n) is a computable sequence and

limn→∞g(n) = µ(Q) = 0.

5



This Martin-Löf test shows that Q has no random elements. (As observed by
Solovay, it is sufficient to have a computable sequence approaching zero rather
than the stricter test with a sequence of measures g(n) ≤ 2−n.)

Theorem 2.4. The set of functions in 3N which represent a total continuous
function has measure one, and every random function represents a continuous
function.

Proof. Let f ∈ 3N and suppose that f does not represent a total function. Then
there is some x ∈ 2N and some τ ∈ {0, 1}∗ such that f(x&n) = τ for almost all
n. Without loss of generality we may assume that τ = ∅. Let A be the set of
functions f : {0, 1}∗ → {0, 1}∗ such that f(σ) = ∅ for arbitrarily long strings σ
and let p = µ∗∗(A). Then certainly p ≤ 5

9 , since if r(0) and r(1) are both in
{0, 1}, then fr /∈ A. Considering the 9 cases for the initial choices of f((0)) and
f((1)), we see that

p =
4
9
p +

1
9
[1− (1− p)2],

so that 1
9p2 + 1

3p = 0, which implies that p = 0. (That is, there are 4 cases in
which |f((i))| = 1 for i = 0, 1 so that immediately f /∈ A, there are 4 cases in
which only one of f((i)) = ∅, in which case the remaining function g, defined
by g(σ) = f(i!σ) must be in A, and there is one case in which f((i)) = ∅ for
i = 0, 1, in which case at least one of the remaining functions must be in A.)

Observe that A is a Π0
1 class, since fr ∈ A if and only if (∀n)(∃σ ∈

{0, 1}n)fr(σ) = ∅. It follows from Lemma 2.3 that no random function can
be in A and therefore every random function f : {0, 1}∗ → {0, 1}∗ indeed rep-
resents a continuous function F : 2N → 2N.

Now the set of Martin-Löf random elements of {0, 1, 2}N has measure one
and there exists a ∆0

2 Martin-Löf real. Hence we have the following.

Theorem 2.5. There exists a random continuous function which is ∆0
2 com-

putable.

Next we obtain some properties of random continuous functions.
We first observe that any continuous function will have a representation

which is not random. In fact, the canonical representation itself can never be
random.

Proposition 2.6. For any continuous function F , the canonical representation
is not random.

Proof. The idea is that whenever the canonical representation labels a node σ
with 2, then the two labels on the successor nodes σ!0 and σ!1 cannot be both
0, or both 1. Thus we have the following Martin-Löf test. Assume by way of
contradiction that r is random and canonical. Let Se be the set of r ∈ 3N such
that r has at least e occurrences of 2 and such that, for the first e occurrences
of 2 in r, the corresponding successor values are not both 0 or both 1. Since r is
random, it must have infinitely many occurrences of 2 and since r is canonical,
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it must belong to every Se. But each Se is a c.e. open set and has measure
≤ ( 7

9 )e, so that no random sequence can belong to every Se.

For any function F on 2N and any σ ∈ {0, 1}∗, define the restriction Fσ of
F to I(σ) by

Fσ(x) = F (σ!x).

Clearly any such restriction of a random continuous function will be random,
but more can be said.

First recall van Lambalgen’s theorem.

Theorem 2.7 (van Lambalgen [24]). The following are equivalent.

1. A⊕B is n-random.

2. A is n-random and B is n-A-random (or vice-versa).

3. A is n-B-random and B is n-A-random.

Proposition 2.8. F is a random continuous function if and only if the func-
tions F(0) and F(1) are relatively random.

Proof. Let r represent F . Suppose first that F is random. It follows as in the
proof of Lemma 2.6 of [3] that F(0) ⊕ F(1) is random and hence F(0) and F(1)

are relatively random by van Lambalgen’s theorem.
Next suppose that F(0) and F(1) are relatively random and let ri repre-

sent F(i) for i = 0, 1. Let d be any martingale, which we think of as bet-
ting on r. Then for i = 0, 1, we can define a martingale di with oracle r1−i

as follows. We will give the definition for d0 and leave d1 for the reader.
Given σ = r0(0), . . . , r0(2p + q − 2) where 0 ≤ q < 2p, use r1 to compute
τ = r(0), . . . , r(2p+1 + q − 2) and then define di to bet in the same proportion
as d. That is, di(σ!j)/di(σ) = d(τ!j)/d(τ) for j < 3. Thus for any node on
the left side of the labelled tree for F , d0 is making the same bet on the next
label that d would have made, and similarly for d1 and the right side.

Since the F(i) are relatively random for i = 0, 1, it follows that di does not
succeed and hence there exist upper bounds Bi for {di(ri&n)}n∈N. But it follows
from the above definitions of di that for any p,

d(r&2p+1 − 2) = d0(r0&2p − 1) · d1(r1&2p − 1).

This is because the martingale d alternates using d0 and d1 and the result can
be viewed in each alternation as multiplying the capital by some factor. Then
in general, for 0 < q ≤ 2p,

d(r&2p+1 + q − 2) = d0(r0&2p + q − 1) · d1(r1&2p − 1)

and
d(r&2p+1 + 2p + q − 2) = d0(r0&2p+1 − 1) · d1(r1&2p + q − 1).

It follows that B0 · B1 is an upper bound for {d(r&k) : k ∈ N}, so that d does
not succeed on r.
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Proposition 2.9. Suppose A ⊂ B are two finite sets of symbols. Given X ∈
BN, let X̃ ∈ AN be the sequence obtained by deleting all symbols in B −A from
X. If X is 1-random, then X̃ is 1-random.

Proof. Given X, X̃ as in the proposition, suppose X̃ is not random and let d
be a constructive martingale on AN that succeeds on X̃. We will construct a
martingale d̂ on BN that succeeds on X̃. Essentially, d̂ will keep its capital
constant on symbols in B−A; it will bet according to d, repeating its bets after
bits which hold symbols from B −A.

Define d̂(λ) = d(λ), and for σ ∈ B∗ and σ̃ the corresponding string of A∗,

d̂(σ!x) =

{
d(σ̃!x)

d(σ̃) d̂(σ) x ∈ A

d̂(σ) x ∈ B −A

The function d̂ is clearly constructive, since d is. To show d̂ is a martingale,
consider the sum

∑

x∈B

d(σ!x) =
∑

x∈A

d(σ̃!x)
d(σ̃)

d̂(σ) +
∑

x∈B−A

d̂(σ)

= d̂(σ)
∑

x∈A

d(σ̃!x)
d(σ̃)

+ d̂(σ)|B −A| = d̂(σ)[|A| + |B −A|].

It remains to show that d̂ succeeds on X. However, that is clear, as on bits
which are in X but not X̃, d̂ keeps its capital constant, and on bits from X̃, it
acts exactly as d would. Therefore since d succeeds on X̃, d̂ succeeds on X and
X is nonrandom.

It is easy to see that, for any random continuous function F and any com-
putable real x, F (x) is not computable. This also follows from our next result.

Theorem 2.10. If F is a random continuous function, then, for any computable
real x, F (x) is a random real.

Proof. Suppose that F is random with representing function fr, let x be a
computable real and let y = F (x). Define the computable function g so that,
for each n,

σg(n) = x&n.

By the Von-Mises–Church–Wald Computable Selection Theorem, the subse-
quence z(n) = r(g(n)) is random in {0, 1, 2}N. Now y = F (x) may be computed
from z by removing the 2’s. Thus F (x) is random by Proposition 2.9.

We note that Fouche [12] has used a different approach to randomness for
continuous functions connected with Brownian motion, first presented by Asarin
and Prokovskiy [1], and has shown that, under this approach, it is also true
that for any random continuous function F , F (x) is not computable for any
computable input x.

It follows that a random function F can never be computably continuous
and hence the graph of F is not a Π0

1 class.
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Theorem 2.11. If F is a random continuous function, then the image F [2N]
has no isolated elements.

Proof. Let f be the random representing function for F and let Q = F [2N].
Suppose by way of contradiction that Q contains an isolated path y. Then
there is some finite τ ≺ y such that y is the unique element of I(τ) ∩Q. Fix σ
such that f(σ) = τ .

For each n, let Sn be the set of all g ∈ F such that for all ρ1, ρ2 ∈ {0, 1}n,

1. g(σ!ρ1) is compatible with g(σ!ρ2),

2. τ ≺ g(σ!ρ1), and

3. τ ≺ g(σ!ρ2)

Then for any each m < n and each ρ ∈ {0, 1}m, we are restricted to at most
7 of the 9 possible choices for f(ρ!0) and f(ρ!1). This same scenario applies
for all ρ ∈ {0, 1}n−1, so that in general, µ(Sn) ≤ ( 7

9 )2
n−1

.
Now for each n, Sn is a clopen set in F and thus the sequence S0, S1, . . .

is a Martin-Löf test. It follows that for some n, F /∈ Sn. Thus there are two
extensions of σ of length n which have incompatible images, contradicting the
assumption that y was the unique element of Q ∩ I(τ).

It follows that the image of a random continuous function is perfect and has
continuum many elements. There are several natural questions about the image
F [2N] of a random continuous function F . Is the image of F a random closed
set? What is the measure of the image? Can the function be onto? We will
give some partial answers.

It follows from Proposition 2.8 that, for any τ ∈ {0, 1}∗, there is a random
continuous function with image ⊆ I(τ). Thus a random continuous function is
not necessarily onto.

Theorem 2.12. For any σ ∈ {0, 1}∗, the probability that the image of a con-
tinuous function F meets I(σ) is always > 3

4 .

Proof. The proof is by induction on |σ|. Without loss of generality, we assume
that σ = 0n. For each n > 0, let qn be the probability that F [2N] meets I((0n)).
Let f be the representing function for F . For n = 1, there are 9 equally probable
choices for the pair f((0)) and f((1)), breaking down into 4 distinct cases.

Case 1. If f((0)) = (1) = f((1)), then F [2N] does not meet I((0)). This
occurs just once.

Case 2. If f((0)) = (0) or f((1)) = (0), then F [2N] meets I((0)). This
occurs in 5 of the 9 choices.

Case 3. If f((i)) = ∅ and f((1 − i)) = (1), then F [2N] meets I((0)) if and
only if F(i)[2N] meets I((0)). This occurs in 2 of the 9 choices, with probability
q1.
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Case 4. If f((0)) = ∅ = f((1)), then F [2N] meets I((0)) if at least one of
F(i)[2N] meets I((0)). This occurs in 1 of the choices, with probability 1− (1−
q1)2. That is, F [2N] fails to meet I((0)) if both F(0)[2N] and F(0)[2N] fail to meet
I((0)).

Putting these cases together, we see that

q1 =
5
9

+
2
9
q1 +

1
9
(2q1 − q2

1),

so that q1 satisfies the quadratic equation

x2 + 5x− 5 = 0.

Thus q1 is the unique solution in [0,1] of this equation, that is,

q1 =
√

45− 5
2

,

which is indeed > .75.
Now let qn = q and let qn+1 = p. Once again we consider the 9 initial

choices, now breaking down into 6 distinct cases.

Case 1. If f((0)) = (1) = f((1)), then F [2N] does not meet I((0n+1)). This
occurs just once.

Case 2. If f((0)) = (0) = f((1)), then F [2N] meets I((0n+1)) if and only
if at least one of F(0) and F(1) meets I((0n)). This occurs just once, and with
probability 1− (1− q)2 = 2q − q2.

Case 3. If f((i)) = (0) and f((1 − i)) = (1), then F [2N] meets I((0n+1))
if and only if F(i)[2N] meets I((0n)). This occurs in 2 of the 9 choices, with
probability q.

Case 4. If f((i)) = ∅ and f((1 − i)) = (1), then F [2N] meets I((0n+1)) if
and only if F(i)[2N] meets I((0n+1)). This occurs in 2 of the 9 choices, with
probability p.

Case 5. If f((0)) = ∅ = f((1)), then F [2N] meets I((0n+1)) if at least one
of F(i)[2N] meets I((0n+1)). This occurs just once, with probability 1− (1−p)2.

Case 6. If f((i)) = ∅ and f((1− i)) = (0), then F [2N] meets I((0n+1)) if at
least one of the following two things happens. Either F(i)[2N] meets I((0n+1)),
or F(1−i)[2N] meets I((0n)). This occurs in 2 of the 9 choices, with probability
1− (1− p)(1− q).

Putting these cases together, we see that

p =
2
3
p− 1

9
p2 − 2

9
pq +

2
3
q − 1

9
q2,

so that p = qn+1 satisfies the equation

p2 + 3p + 2pq − 6q + q2 = 0.
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We note that for p = q, the solutions are p = q = 0 and p = q = 3
4 . This

explains the value 3
4 in the statement of theorem.

Now assume by induction that q > 3
4 . Suppose by way of contradiction that

p ≤ 3
4 . It follows that

9
16

+
9
4

+
3
2
q − 6q + q2 ≥ 0.

Simplifying, this implies that 16q2 − 72q + 45 ≥ 0. But this factors into (4q −
3)(4q − 15) and is only ≥ 0 when either q ≤ 3

4 or q ≥ 15
4 . Since the latter is

impossible, we obtain the desired contradiction that q ≤ 3
4 .

Corollary 2.13. For any y ∈ 2N,

(a) µ∗∗({F : y ∈ F [2N]}) = 3
4 ;

(b) there exists a random continuous function F with y ∈ F [2N].

Proof. (a) Let p be the probability that y ∈ F [2N]. It follows that for each
σ ∈ {0, 1}n, the probability that y ∈ F [I(σ)], given that f(σ) is consistent with
y, also equals p. It follows from the proof of Theorem 2.12 that p = 3

4 .
(b) Since the random continuous functions have measure 1 in C(2N), it follows

that some random continuous function has y in the image.

Corollary 2.14. The image of a random continuous function need not be a
random closed set.

Proof. It was shown in [2] that a random closed set has no computable members.
Let F be a random continuous function with 0ω in the image, as given by
Corollary 2.13. Then F [2N] is not a random closed set.

3 Zeroes of Random Continuous Functions

In this section we prove that for any random continuous function F , the set
Z(F ) = {x : F (x) = 0} is a random closed set. For any subset S of C, let
ZS = {F ∈ F : Z(F ) ∈ S}.

Lemma 3.1. For any open set S, µ∗∗(ZS) ≤ µ∗(S).

Proof. It suffices to prove the result for intervals S = I(σ). We will show by
induction on |σ| that µ∗∗(ZI(σ)) = ( 1

4 )|σ|, whereas of course µ∗(I(σ)) = (1
3 )|σ|.

Recall from Corollary 2.13 that 0 ∈ F [2N] with probability exactly 3
4 . For

|σ| = 1, there are two distinct cases.

Case I Suppose first that σ = (i), where i ∈ {0, 1}. Then F ∈ ZS if and
only if F has a zero in I((i)) and has no zero in I((1 − i)). Now F has a zero
in I((i)) if f((i)) ∈ {0, 2} and if the restricted function has a zero, which gives
probability 2

3
3
4 = 1

2 . Thus the combined probability that F ∈ ZS is 1
4 .
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Case II Suppose next that σ = (2). Then F ∈ ZS if and only if F has
zeroes in both I((0)) and I((1)). It follows from the argument in Case I that
µ∗ ∗ (ZS) = 1

4 .

Notice that Z{∅} = {F : F has no zeroes} has positive measure 1
4 but

µ∗({∅}) = 0.
Now suppose |σ| = n and let τ = σ!i; suppose by induction that µ∗∗(ZI(σ)) ≤

µ∗(I(σ)). Interpret τ as the code for a (finite) binary tree and let ρ ∈ {0, 1}∗ be
the terminal node of that tree such that i indicates the branching of ρ. Again
there are two cases.

Case I Suppose first that i ∈ {0, 1}. Then F ∈ ZI(τ) if and only if F ∈ ZI(σ)

and furthermore F has a zero in I((ρ!i)) and has no zero in I((ρ!1 − i)). It
follows as above that µ∗∗(ZI(τ)) = 1

4µ∗∗(ZI(σ)) = ( 1
4 )n+1.

Case II Suppose next that i = 2. Then F ∈ ZI(τ) if and only if F has zeroes
in both I(ρ!0) and I(ρ!1). It follows as above that µ∗∗(ZI(τ)) = 1

4µ∗∗(ZI(σ)) =
( 1
4 )n+1.

An arbitrary open set is a disjoint union of intervals and thus the desired
inequality can be extended to open sets.

Theorem 3.2. For any random continuous function G : 2N → 2N, the set of
zeroes of G is either empty or is a random closed set.

Proof. Suppose that G is a random continuous function which has at least one
zero, and let S0, S1, . . . be a Martin-Löf test in C. Then there is a computable
function φ such that Si = ∪nI(σφ(i,n)). We may assume without loss of gen-
erality µ∗(Si) ≤ 2−i−2 and that each Si is not clopen and that, for each i,
the intervals I(σφ(i,n)) are pairwise disjoint. We will define a Martin-Löf test
S′0, S

′
1, . . . in the space F and use the fact that G must satisfy {S′i}i∈ω to show

that Z(G) satisfies {Si}i∈ω.
Fix an interval I(σ) in C and let Cσ = ZI(σ). Observe that there is a clopen

set Bσ ⊆ 2N and a corresponding finite set τ0, . . . , τk−1 of strings such that
Bσ = ∪j<kI(τj), associated with σ such that, for any Q ∈ C with code r,
r ∈ I(σ) if and only if Q ⊆ Bσ and Q ∩ I(τj) *= ∅ for all j < k. It follows that
C is a difference of Π0

1 classes. That is, F ∈ C if and only if the following two
conditions hold.

(i) For each j, F has a zero in I(τj); by compactness, this is equivalent
to saying that for any &, there is an extension τ ∈ {0, 1}& of τj such that
f(τ) ∈ {0, 2}|τ |, where f is the function on strings representing F .

(ii) F has no zeroes outside of B. Let 2N−B = ∪τ∈AI(τ). By compactness,
F has no zeroes outside of B if and only if

(∃&)(∀τ ∈ A)(∀τ ′ 7 τ) [|τ ′| = & ⇒ (∃m)(f(τ ′&m) = 1)] . (2)

Note that the measure of Cσ may be computed uniformly from σ given
the calculation from Corollary 2.13 that whenever f(σ) ∈ {0, 2}|σ|, then the

12



probability that F has a zero in I(σ) is exactly 3
4 . For each σ, we will uniformly

compute a c.e. open set Sσ ⊆ F such that Cσ ⊆ Bσ and such that µ∗∗(Bσ) ≤
2 · µ∗∗(Cσ). There are two stages in the construction of Bσ.

Stage I: Let U be the set of codes σ′ for partial functions f ′ such that
(2) holds with f ′ in place of f , and such that furthermore for every j and &
such that f ′ is defined on all length-& extensions τ of τj , there is such a τ with
f ′(ρ) ∈ {0, 2} ∀ρ 8 τ . It is clear that for any F ∈ Cσ, there exists σ′ ∈ U with
F ∈ I(σ′) and hence

Cσ ⊆
⋃

{I(σ′) : σ′ ∈ U}.

As usual, we may then uniformly compute from U a set U ′ such that the intervals
I(σ′) for σ′ ∈ U ′ are pairwise disjoint in F and

⋃
{I(σ′) : σ′ ∈ U} =

⋃
{I(σ′) : σ′ ∈ U ′}.

For each σ′ ∈ U ′, let Q(σ′) ⊆ I(σ) be the Π0
1 class in F consisting of those

extensions of σ′ which actually have zeroes in each I(τj). Then in fact we have

Cσ =
⋃

{Q(σ′) : σ′ ∈ U ′}.

As noted above, we can actually compute the measure µ∗∗(Q(σ′)) uniformly
from σ′ by expressing Q(σ′) as an effective decreasing intersection of clopen
sets. Thus for each σ′, we can compute a clopen set B(σ′) such that Q(σ′) ⊆
B(σ′) ⊆ I(σ′) and µ∗∗(B(σ′) ≤ 2 · µ∗∗(Q(σ′)). Let

Bσ =
⋃

{B(σ′) : σ′ ∈ U ′}.

Then we have Cσ ⊆ Bσ and µ∗∗(Bσ) ≤ µ∗∗(Cσ).
Finally, for each i, let

S′i = ∪nBσ′
φ(i,n)

.

Then by Proposition 2.9, µ∗∗(S′i) ≤ 2 ·µ∗(Si) ≤ 2−i−1 and therefore there exists
some i such that G /∈ S′i, since F is random. But this means that Z(G) /∈ Si and
hence Z(F ) meets the Martin-Löf test. Thus Z(F ) is random, as desired.

3.1 Distance functions

The space 2N has metric δ defined by

δ(x, y) =

{
0, if x = y;
2−n, if n is the least such that x(n) *= y(n).

This may be viewed as a computable mapping from 2N × 2N into 2N by repre-
senting 0 as 0ω and 2−n as 0n!1!0ω.

For any closed set Q in 2N, the distance function dQ may be defined as

δQ(x) = min{dQ(x, y) : y ∈ Q}.
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That is,

δQ(x) =

{
0, if x ∈ Q;
2−n, where n is the least such that x&n /∈ TQ, otherwise.

We note that the distance function of an effectively closed set is not always
computable. We will say that δ : 2N → 2N is a pseudo-distance function for the
set Q if Q is the set of zeroes of δ. Then it is easy to see that Q is a Π0

1 class if
and only if Q has a computable pseudo-distance function. The distance function
δQ based on δ as defined above can never be random, since for any σ /∈ TQ, δ is
constant on the interval I(σ). If Q possesses a random pseudo-distance function
δ, then it is the set of zeroes of δ and hence is a random closed set by Theorem
3.2.

We conjecture that the converse also holds, that is, any random closed set
possesses a random pseudo-distance function.

4 Conclusions and Future Research

In this paper we have proposed a notion of randomness for continuous functions
on the Cantor space 2N and derived several properties of random continuous
functions. Random ∆0

2 continuous functions exist, but no computable function
can be random. In fact, no random function can map a computable real to
a computable, or even c.e. real. We have shown that the image of a random
continuous function is always a perfect set and hence uncountable. For any
y ∈ 2N, there exists a random continuous function F with y in the image of F .
Thus the image of a random continuous function need not be a random closed
set. We have shown that the set of zeroes of a random continuous function is a
random closed set and we conjecture that the converse is also true.

We remark that one could also define n-random closed sets and continu-
ous functions and show that, for example, the set of zeroes of an n-random
continuous function is an n-random closed set.

We would like to extend the notion of a random continuous function to
functions on the real unit interval [0, 1] and the real line 9 by representing
functions again in terms of the images of subintervals. We conjecture that a
random continuous real function cannot be left or right computable and in fact,
not weakly computable. We also conjecture that a random continuous function
is nowhere differentiable.
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