
INVARIANCE IN E∗ AND EΠ

REBECCA WEBER

Abstract. We define G, a substructure of EΠ (the lattice of Π0
1

classes) and show that a quotient structure of G, G♦, is isomorphic
to E∗. The result builds on the ∆0

3 isomorphism machinery, and
allows us to transfer invariant classes from E∗ to EΠ, though not, in
general, orbits. Further properties of G♦ and ramifications of the
isomorphism are explored, including degrees of equivalence classes
and degree invariance.

1. Introduction

A Π0
1 class may be defined as the collection of infinite paths through

a computable subtree of 2<ω, the complete binary-branching tree. Π0
1

classes have become a fundamental notion in computability theory be-
cause of their ability to code a wide range of constructions. For exam-
ple, the collection of ideals of a computably enumerable (c.e.) commu-
tative ring forms a Π0

1 class. For this and other examples, as well as a
survey of results about Π0

1 classes, see [1], [3], and [5].
The lattice of all Π0

1 classes is called EΠ, by analogy with E , the
lattice of computably enumerable (c.e.) sets. The properties of E have
been extensively studied (for a survey, see [19], chapters X and XV).
Research on Π0

1 classes and EΠ is currently quite active, with many open
questions (see [3] for a number of examples). However, relatively little
is known about the orbits and invariant classes of EΠ. The goal of the
research presented here is to expand that knowledge, in particular by
transferring information to EΠ from E∗, the lattice of c.e. sets modulo
finite difference.

A Π0
1 class P is principal (or clopen) if there is a finite set F of nodes

of 2<ω such that an infinite path of the tree is in P if and only if it
extends some σ ∈ F . Cholak, Coles, Downey, and Herrmann [7] showed
that there were at most two non-isomorphic intervals of the form [P, 2ω]
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in EΠ: those where P is principal and those where it is nonprincipal.
Cenzer and Nies [4] showed that these are in fact distinct cases.

Nies proceeded to define G = [P, 2ω] for P nonprincipal. It is via
G that we will transfer information from E∗ to EΠ, and many of Nies’
unpublished results are reproduced in §3-4. Several of the results are
directly proved in the setting of Π0

1 classes. However, although the goal
is to transfer information to EΠ, it is generally more straightforward to
approach G from a different perspective, that of c.e. ideals (see §2).

Prior to being investigated in this context, G (as a collection of
ideals) arose as part of the study of the lattice of c.e. substructures of
a computably presented model, an area suggested by Metakides and
Nerode in a 1975 paper [15]. A number of papers emerged studying
substructures of particular models, such as vector spaces, algebraically
closed fields, and Boolean algebras (see Nerode and Remmel [16] for
references). Remmel [17] and later Downey [9, 10] generalized the work
on specific structures to results about effective closure systems (M, cl),
whereM is a computable set and cl : P(M) → P(M) is an effective clo-
sure operator, a map with certain properties. For example, the operator
could take a subfield of M to its algebraic closure within M . As part of
this work the notion of equivalence modulo finite difference, as in E∗, is
extended to equivalence modulo “finitely-generated difference.” That
is, A =∗ B if there is a finite set X such that cl(A ∪X) = cl(B ∪X).
Downey in particular gives a long list of examples of effective closure
systems which includes the remark that in order to keep the lattice of
c.e. ideals from collapsing under =∗, one must restrict the domain, and
suggests fixing a maximal ideal to work within (see [9] §2 Example 8).
This restriction gives the structure herein called G.

We put the same equivalence relation on G as in [9, 10, 17], where
the closure operator takes a set to the ideal it generates. Since =∗ has
been used in other work on Π0

1 classes to mean finite difference literally,
we will use =♦ for finitely-generated difference. We denote G/=♦ by
G♦. Definitions and basic results for G♦ may be found in §3.

As we will see, the structure G♦ exhibits remarkable similarity to E∗.
André Nies and the author have translated several significant theorems
of E∗ to G♦, where they hold with similar proofs. Examples include
the Owings splitting theorem (Theorem 4.5); the existence, for any
initial segment, of sets maximal in that segment; the existence of major
subsets of noncomplemented elements; and the existence of an orbit of
creative sets. These translations suggested a close relationship between
G♦ and E∗, and in fact all are corollaries of our main result:

Theorem 15.1. G♦ is isomorphic to E∗.
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The proof is put off to the end of the paper, for the sake of clarity.
It draws upon the ∆0

3 automorphism machinery developed by Cholak,
Soare, Harrington, and others (the specific format follows [12]; see also
[6]), which will be fully developed in the exposition, construction, and
verification in §9-15.

We will show that a class of G♦ which forms an orbit or is invariant
under automorphisms gives a class of EΠ which is invariant. With
the above isomorphism, then, we are able to translate an invariant
class of E∗ to one of EΠ. However, orbits do not in general survive
the transition. In fact, we will show that any orbit of G♦ containing
a Π0

1 class of Cantor-Bendixson rank strictly less than ωCK
1 does not

translate to an orbit of G. Invariance and orbit transfer results are
presented in §5.

Unfortunately, we may not automatically translate degree-theoretic
information via the isomorphism. A collection D of Turing degrees
forms a degree invariant class in E∗ if there is a collection C of c.e.
sets closed under automorphisms of E∗, such that every set in C has a
degree in D and every degree in D has a representative set in C. The
image of C under the isomorphism from E∗ to G♦ does not necessarily
correspond to the same degree collection D, as we will discuss in §7.
Degree-theoretic results and open questions may also be found in §5
and §6.

Finally, §8 holds a few notes on thin and minimal Π0
1 classes in G♦.

2. Preliminaries

As usual, we denote the collection of computably enumerable (c.e.)
sets under inclusion by E , and the quotient structure of c.e. sets
modulo finite difference by E∗. Notation for functions and sets, and
computability-theoretic terminology, will follow Soare [19].

We define a Π0
1 class as the collection of infinite paths through a com-

putable subtree of 2<ω. The lattice of Π0
1 classes ordered by inclusion

is denoted EΠ, after E . For basic properties of Π0
1 classes, see [1, 3, 5].

The countable atomless Boolean algebra is denoted Q. We view Q
as a collection of propositional formulas modulo tautological equiva-
lence, where the independent elements {pi : i ∈ ω} generate Q. That
is, letting εipi stand for either pi or ¬pi, a typical element of Q is a
collection of logically equivalent formulas, each of which may be put
into the form

n∨
j=1

m∧
k=1

εjkpijk

for some n,m ∈ ω.
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Elements of {pi,¬pi}i∈ω are called literals. We order Q by logical
implication. Note that while in most formulas the symbol & will be
used for conjunction, within elements of Q we will use the symbol ∧.

Finite strings (elements of 2<ω) will in general be denoted by low-
ercase Greek letters, especially σ and τ , and infinite strings (elements
of 2ω) by lowercase Roman letters, especially f and g. The notation
for elements of Q will depend on the context. The empty string in 2<ω

is denoted λ, and the length of a string σ is |σ|. If τ extends σ, we
write σ ⊆ τ ; if that extension is certainly proper, we write σ ⊂ τ . The
symbol ⊥ indicates two elements which are disjoint or incomparable.
In Q, ϕ ⊥ ψ means ϕ 6→ ψ and ψ 6→ ϕ. In 2<ω, σ ⊥ τ means σ 6⊆ τ and
τ 6⊆ σ. A sequence is pairwise disjoint if each element of the sequence
is disjoint from every other element. For a string f , f � i is the initial
segment of f of length i; that is, the unique string σ ∈ 2<ω of length
i such that σ ⊆ f . The concatenation of the string τ onto the end of
the string σ will be denoted σ_τ .

For a string σ ∈ 2<ω, [σ] is the interval generated by σ or cone above
σ, which means either {f ∈ 2ω : σ ⊂ f} or {τ ∈ 2<ω : σ ⊆ τ}, depend-
ing on context. Intervals are both closed and open in the topology of
2ω and of 2<ω, and so finite unions of intervals are also both closed and
open, which will be abbreviated clopen. A Π0

1 class which is clopen in
the topology of 2ω is also called principal.

Definition 2.1. A subset I of Q is called an ideal if

(i) σ, τ ∈ I ⇒ σ ∨ τ ∈ I
(ii) (σ ∈ I ∧ τ ∈ Q) ⇒ σ ∧ τ ∈ I

The ideal I in the above definition is called a c.e. ideal if it is com-
putably enumerable as a set. The ideal generated by a set X, denoted
〈X〉, is the closure of X under the implications above. If an ideal may
be generated by a finite subset of Q (equivalently, by a single element
of Q), it is called principal.

The collection of all c.e. ideals of Q is called I(Q), and forms a lattice.
The greatest element is Q, the least is 0 (the collection of logically
contradictory formulas), the join of X and Y is X ∨Y = 〈X ∪Y 〉, and
the meet is X ∩ Y .

Definition 2.2. A subset I of 2<ω is called an ideal if

(i) σ_0, σ_1 ∈ I ⇒ σ ∈ I
(ii) (σ ∈ I ∧ σ ⊆ τ) ⇒ τ ∈ I

Again, an ideal is called c.e. if it is c.e. as a set. In 2<ω, an ideal X
has a root set ; that is, a collection of pairwise disjoint strings {σi}i∈I
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which generate X, with the minimality property that if τ ∈ X and
τ ⊆ σi, then τ = σi. The root set is finite exactly when X is principal.

The collection of all c.e. ideals of 2<ω is denoted I(2<ω), a lattice
with greatest element 2<ω and least element ∅.

Lemma 2.3 ([7] 2.5, equivalent form). I(Q) and I(2<ω) are computably
isomorphic in a natural way.

Next we associate EΠ with I(Q), via I(2<ω). Let T be a computable
subtree of 2<ω, so that [T ] is a Π0

1 class. A node of 2<ω with no extension
in [T ] is called a nonextendible node of T (note that this set includes
every node in T = 2<ω − T ). The following claims are easily checked.

Claim 2.4. Let T be a computable binary-branching tree. The collec-
tion of all nonextendible nodes of T forms an ideal of 2<ω; in fact, it
is equal to 〈T 〉.

Note that if T and T ′ are trees such that [T ] = [T ′], then T and T ′

generate the same ideal of 2<ω, by the definition of nonextendible.

Claim 2.5. Every ideal of 2<ω is the set of nonextendible nodes of
some Π0

1 class.

Thus the map T 7→ 〈T 〉 gives a well-defined bijective correspondence
between ideals of 2<ω and Π0

1 classes. In fact, it is a computable iso-
morphism, and therefore I(Q) and EΠ are computably isomorphic as
well. Notice that the isomorphism is order-reversing, since a larger Π0

1

class has fewer nonextendible nodes and thus corresponds to a smaller
ideal. In particular we have the following result.

Proposition 2.6. Under the isomorphism above, a maximal ideal of
2<ω, and thus of Q, corresponds to a singleton Π0

1 class.

Corollary 2.7. A maximal ideal of 2<ω has a computable root set.

There are some technical details of ideals to cover, in order to stream-
line matters later on. A sequence of elements {ai}i∈I of Q (respectively,
2<ω) which is pairwise disjoint, as defined before, has the property that
for all i, j,∈ I, i 6= j, 〈ai〉 ∩ 〈aj〉 = 0 (respectively, ∅). Note that given
an arbitrary c.e. sequence {ai}i∈ω generating an ideal A ∈ I(Q), one
can construct a pairwise disjoint c.e. generating sequence {âi}i∈ω for
A. Let âi = ai ∧ ¬(∨j<iaj). It is easy to see that sequence fulfills the
requirements.

Now we standardize the enumeration of an ideal. Any principal ideal
is computable, so we may refer to it without using an enumeration.
Given a c.e. generating sequence {ai}i∈ω for the ideal A, define As as
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the principal ideal generated by {ai : i ≤ s}. In §9-15 the enumeration
will be defined differently, but unless otherwise stated {As} is a nested
sequence of principal ideals.

3. Initial Definitions and Results for G

Recall that I(Q) is the lattice of computably enumerable ideals of
Q, the countable atomless Boolean algebra.

Theorem 3.1 ([7] 3.9, equivalent form). (i) If I ∈ I(Q) is nontriv-
ial and principal, then [0, I] ∼= I(Q).

(ii) If I, J ∈ I(Q) are nonprincipal, then [0, I] ∼= [0, J ].
(iii) The isomorphisms above are computable.

Herrmann conjectured that if I ∈ I(Q) is principal and J ∈ I(Q) is
nonprincipal, then [0, I] 6∼= [0, J ]. His conjecture was proven by Cenzer
and Nies.

Theorem 3.2 ([4] 4.1, equivalent form). Let I ∈ I(Q) be nonprincipal.
Then [0, I] 6∼= I(Q).

Definition 3.3 (Nies). G = [0,M ] ⊂ I(Q), an initial segment of I(Q)
under inclusion, for any nonprincipal ideal M .

By the theorems preceding the definition, all copies of G are isomor-
phic to each other but not to I(Q). To distinguish different copies of
G within I(Q), we will use the notation GM = [0,M ].

Define an equivalence relation =♦ on G by

A =♦ B ⇐⇒ (∃m ∈M)[A ∨ 〈m〉 = B ∨ 〈m〉].
In other words, A =♦ B when their differences are contained in a
principal subideal of M .
Notation. G/=♦ is denoted G♦.

The structure G♦ is essentially G modulo principal ideals. Notice
that =♦ depends on our choice of G.

The ordering on G♦ is set containment outside some principal ideal.

A♦ ≤ B♦ ⇐⇒ (∃m ∈M)[A ∨ 〈m〉 ⊆ B ∨ 〈m〉]
for any A ∈ A♦, B ∈ B♦. When we are considering specific representa-
tives A, B of A♦, B♦, we will sometimes write A ⊆♦ B for A♦ ≤ B♦,
as we might write A♦ = B♦ for A =♦ B.

André Nies presented initial results on G in a talk at the San Diego
Joint Mathematics Meetings in January, 2002, and later began to con-
sider G♦. Results attributed to Nies in this paper were stated by him
in San Diego or during his visit to Notre Dame in May of 2002. Proofs
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have in most cases been fleshed out from sketches he provided while
visiting.

Unless otherwise stated, G is to be considered as a subset of I(Q).
However, there are two isomorphic settings which we will work in for
certain results.

First, Gmay be considered under duality as [N, 2ω] ⊂ EΠ for any non-
principal Π0

1 class N (note the order-reversal). As noted in Proposition
2.6, the case where the ideal M is maximal corresponds to N being a
singleton. We may recast our previous definitions in this setting.

Here =♦ is the equivalence relation

P =♦ Q ⇐⇒ (∃ clopen C)[N ⊆ C ∧ P ∩ C = Q ∩ C].

When N is a singleton {f}, =♦ simplifies to

P =♦ Q ⇐⇒ (∃n)[P ∩ [f � n] = Q ∩ [f � n]].

In the singleton Π0
1 class setting, P♦ ≤ Q♦ if given representatives

P , Q, respectively,

(3.1) (∃n)[P ∩ [f � n] ⊆ Q ∩ [f � n]].

The order relation for Π0
1 classes, then, is eventual containment. Note

that for P containing f , if there exists an n ∈ ω such that [f � n] ⊆ P ,
then P =♦ 2ω. Thus not only are the intermediate elements of G♦

nonprincipal, but indeed, they are nonprincipal in [f � n] for all n.
The remaining perspective we may use is that of c.e. ideals of

the complete binary-branching tree, 2<ω. The lattice I(2<ω) is
useful because it is easy to visualize, but not every automorphism
of I(2<ω) is induced by an automorphism of 2<ω. We will, how-
ever, make extensive use of the 2<ω setting, especially GM0 where
M0 = 2<ω − {0n : n ∈ ω} ⊂ 2<ω.

Proposition 3.4. The order relation in G is Π0
2 complete, and the

order relation of G♦ is Σ0
3 complete.

Proof. We work in the Π0
1 setting, specifically in G = [{0ω}, 2ω]. Since

all copies of G are computably isomorphic, this will show the proposi-
tion for arbitrary G. Given P and Q in G, where TP and TQ are the
corresponding computable trees, P ⊆ Q if

(∀σ ∈ TP )(∃k)(∀|τ | = k)[(τ � σ → τ 6∈ TP ) ∨ σ ∈ TQ]

which, since the innermost quantifier is bounded, is a Π0
2 sentence. The

sentence (3.1) defining ordering in G♦ is then Σ0
3.

The set Tot = {e : We = ω} is Π0
2 complete ([19] IV.3.2), and the set

Cof = {e : We is cofinite} is Σ0
3 complete ([19] IV.3.5). First we show

that Tot is reducible to the ordering of G.
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Given a c.e. set We, define a tree Te as follows: Begin to build a
complete tree. At any point that you see n↘ We, cease extending 0n1
in Te. Then the index e ∈ Tot if and only if [Te] ⊆ {0ω}.

The above construction also shows that Cof is reducible to the order-
ing on G♦, because e ∈ Cof if and only if there is some n such that all
m ≥ n are in We. In that case, [Te]∩ [0n] = {0ω}, so [Te] ⊆♦ {0ω}. �

Now we introduce examples of significant index sets for G.

Definition 3.5. For a fixed GM with M maximal, let We, e ∈ ω, be an
enumeration of all subideals of M . The following are three index sets
for GM :

(i) Prn = {e : We is principal}
(ii) Npr = {e : We is nonprincipal}
(iii) Cop = {e : (∃m ∈M)[W e ⊆ 〈m〉], that is, We is “co-principal”}

Theorem 3.6. Prn is Σ0
2, Npr is Π0

2, and Cop is Σ0
3.

Proof. The ideal We is nonprincipal if every principal ideal of M omits
at least one element of We. The index set is

Npr = {e : (∀m ∈M)(∃x ∈M)(∃s)[x ∈ We,s & x 6∈ 〈m〉]},

which is Π0
2 because membership in M , 〈m〉, or We,s is computable.

Since every ideal is principal or nonprincipal but not both, this also
shows that Prn is Σ0

2.
We is co-principal if its complement is contained in a principal ideal

of M ; that is, if e is in the set

Cop = {e : (∃m ∈M)(∀x ∈M)(∃s)[x ∈ We,s ∨ x ∈ 〈m〉]},

which is a Σ0
3 set. �

Theorem 3.7. Npr is Π0
2-complete, and Prn is Σ0

2-complete.

Proof. We will work from the 2<ω perspective, specifically in GM0 . As
in Proposition 3.4, this will show the result for all copies of G. We use
the Σ0

2-complete set Fin = {e : We is finite} and the Π0
2-complete set

Inf = {e : We is infinite} (see [19] IV.3.2).
Given a c.e. setA, let I be the ideal generated by the set {0n1 : n ∈ A}.

I is a c.e. ideal in GM0 . If I is nonprincipal, the given set A is infi-
nite, and if I is principal, A is finite. Therefore Fin reduces to Prn
and Inf reduces to Npr, and Prn and Npr are Σ0

2- and Π0
2-complete,

respectively. �
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4. Further comparisons between G, G♦, E, and E∗

Proposition 3.4 showed that G and G♦ have the same order relation
complexities as E and E∗, respectively. Theorem 3.7 showed that the
index sets of principal and nonprincipal ideals in G correspond in com-
plexity to the index sets of finite and infinite sets, respectively, in E .
There is another interesting connection between G and E .

Proposition 4.1 (Nies). G contains E as an end segment.

Proof. Fix GM ⊂ I(Q) and let {mi} be a disjoint list of generators for
M . Define (uniformly) a sequence Mi of maximal subideals of mi, and
let C =

⋃
iMi. Then we can map E to [C,M ] ⊆ G isomorphically by

V ∈ E 7→ C ∪ < mi : i ∈ V >. �

It should be noted that Downey proved a similar proposition for G♦,
showing there is a subinterval of G♦ effectively isomorphic to E∗ ([9]
Lemma 3.1; see also the corrigendum [10]).

The next question is whether any pair of these structures are isomor-
phic. With G we obtain only negative results. G is not isomorphic to E
because E has atoms (the singleton sets) and G does not; a nontrivial
ideal always has proper subideals. G is, furthermore, not isomorphic
to E∗, because in E∗ all nontrivial complemented elements share an
orbit. In G, the principal ideal 〈m〉, for example, does not share an

orbit with its complement, M ∩ 〈m〉. As will be seen in Corollary 5.5,
all automorphisms of G are induced by those of M , so a principal ideal
cannot map to a nonprincipal ideal.

We are left to consider possible isomorphisms involving G♦, with E ,
E∗, or G. In fact, we have the following theorem:

Theorem 15.1. G♦ is isomorphic to E∗.

As a corollary, we see G♦ is not isomorphic to either E or G. The
proof of Theorem 15.1 is quite long and has been put off to the end
of this paper. The exposition and definitions for the isomorphism are
found in §9-13. The construction itself is in §14, and the verification
in §15. The isomorphism as constructed is ∆0

3; it is open whether that
complexity bound is tight.

Initially, we believed such an isomorphism was impossible, and so
tried to construct substructures of G♦ which could not exist in E∗, such
as an end segment composed of three elements. However, we ultimately
proved a translation of the Owings Splitting Theorem, Theorem 4.5
below, putting an end to our efforts to find a distinction between G♦

and E∗. The translated Owings Splitting in G♦ is a corollary of the
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isomorphism between E∗ and G♦, Theorem 15.1. A version also holds
for G, Corollary 4.6 below.

The Owings Splitting Theorem states that a c.e. set that is noncom-
plemented in an interval may be split into two disjoint c.e. sets that
are noncomplemented in the same interval. In order to translate it we
must consider complementation in G and G♦. Complementation in G
is standard; however, unlike in I(Q) as a whole, being complemented
in G is not equivalent to being principal. For example, in 2<ω with
M0 = 2<ω −{0n : n ∈ ω} as before, the ideal 〈02n1 : n ∈ ω〉 is nonprin-
cipal but complemented in GM0 by 〈02n+11 : n ∈ ω〉. Complementation
in G♦ requires a definition.

Definition 4.2. Let C♦ < B♦ be elements of G♦. The equivalence

class B̃♦ is a complement of B♦ over C♦ if

(1) (∃m ∈M)[(B ∩ B̃) ∨ 〈m〉 = C ∨ 〈m〉]
(2) (∃n ∈M)[B ∨ B̃ ∨ 〈n〉 = M ]

For B♦ < I♦, I a c.e. ideal, B̃♦ is a complement of B♦ in [C, I]♦M if
we replace (2) above with

(2 ′) (∃n ∈M)[B ∨ B̃ ∨ 〈n〉 = I ∨ 〈n〉].

Unfortunately, unlike the case of E and E∗, the complemented ele-
ments of G and G♦ are not the same. Of course all elements comple-
mented in G are complemented in G♦, but the converse is not true. As
an example, inside [0,M0] define

B = 〈02n1, 1n0 : n ≥ 1〉.

That is, B contains all the intervals off of the path of all ones, and ev-
ery other interval off the path of all zeroes. The ideal B is noncomple-
mented in GM0 because its complement must contain {1n : n ∈ ω}. For
any n, the ideal 〈1n〉 contains 1n0, so every ideal containing {1n : n ∈ ω}
has nonempty intersection with B and is thus not a complement. How-
ever, in G♦

M0
, B is complemented by

B̃ = 〈02n−11 : n ≥ 1〉

because B ∩ B̃ = ∅ and B ∨ B̃ ∨ 〈1〉 = M0.

Proposition 4.3. An element of G♦ is complemented if and only if it
contains a complemented element of G.

Proof. The “if” direction is clear from the fact that a complement in
G is a complement in G♦. We must show that every complemented
element of G♦ contains a complemented element of G.
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Let B be a c.e. ideal such that B♦ is complemented. Then there

exists some B̃ and n,m ∈ M so B ∩ B̃ ⊆ 〈m〉 and B ∨ B̃ ∨ 〈n〉 = M .
Let C = 〈n〉∨〈m〉 and I = B∩C. Then I =♦ B and I is complemented

by B̃ ∨ C in G. �

We are now ready to state the Owings Splitting Theorem for G and
G♦. First we recall the statement of the theorem for E .

Theorem 4.4 (Owings Splitting). Let C ⊆ B be c.e. sets such that
B − C is not co-c.e. (that is, B is not complemented over C). Then
there exist c.e. sets A0, A1 such that

(1) A0 ∩ A1 = ∅
(2) A0 ∪ A1 = B
(3) Ai − C is not co-c.e. for i = 0, 1
(4) For any c.e. set W , i = 0, 1,

C ∪ (W −B) not c.e. ⇒ C ∪ (W − Ai) not c.e.

Note that the last condition states for W ⊇ B that if B is not
complemented in [C,W ], then neither is Ai ∪ C. For a proof of the
theorem, see [19] (X.2.5).

The following is the translation of Owings Splitting toG♦, a corollary
of Theorem 15.1.

Theorem 4.5. Let C♦ < B♦ be elements of G♦ such that B♦ is non-
complemented over C♦. Then there exist c.e. ideals A0, A1 ⊆ M such
that

(1) (∃m ∈M)[A0 ∩ A1 ⊆ 〈m〉]
(2) (∃n ∈M)[A0 ∨ A1 ∨ 〈n〉 = B ∨ 〈n〉]
(3) A♦

i ∨ C is noncomplemented over C♦, i = 0, 1
(4) For any c.e. ideal I ⊆ M , if B♦ < I♦ and B♦ is noncomple-

mented in [C, I]♦M , then A♦
i ∨ C is also noncomplemented in

[C, I]♦M for i = 0, 1.

Corollary 4.6. The Owings Splitting Theorem also holds in G. That
is, if C ⊆ B are elements of G such that B is noncomplemented over
C, there exist c.e. ideals A0, A1 ⊆M such that

(1) A0 ∩ A1 = 0
(2) A0 ∨ A1 = B
(3) Ai ∨ C is noncomplemented over C, i = 0, 1
(4) For any c.e. ideal I ⊆M , if B ⊆ I and B is noncomplemented

in [C, I], then Ai ∨ C is also noncomplemented in [C, I] for
i = 0, 1.
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Proof. Let Â0 and Â1 be a splitting of B♦ obtained using Theorem
4.5. Since containment and complementation are more restrictive in G
than in G♦, properties (3) and (4) are already satisfied. In fact, any

representatives of Â♦
0 and Â♦

1 will satisfy (3) and (4) in G. Therefore
we must find representatives which are a split of B in G. Let m ∈ M
be such that Â0∨ Â1∨〈m〉 ⊆ B∨〈m〉 and additionally Â0∩ Â1 ⊆ 〈m〉.
Note that Âi ∨ 〈m〉 ⊆ B ∨ 〈m〉 for i = 0, 1.

Let A0 = Â0 ∩ 〈m〉. It is immediate that A0 =♦ Â0, A0 ⊆ B,

and A0 ∩ Â1 = 0. Now we alter Â1 so it is a complement to
A0 in B. Let A1 = B ∩ (Â1 ∨ 〈m〉). Clearly A0 ∩ A1 = 0 and

A0 ∨ A1 = B. We must show A1 =♦ Â1. The witness is simply m.
Note A1 ∨ 〈m〉 = (B ∩ Â1) ∨ 〈m〉 = (B ∨ 〈m〉) ∩ (Â1 ∨ 〈m〉). Since

Â1∨〈m〉 ⊆ B∨〈m〉, that last ideal is simply Â1∨〈m〉, which is clearly

in Â♦
1 . �

5. Transfer of Information from E∗ to I(Q)

First we briefly consider the translation of formulas fromG♦ toG and
I(Q), preserving truth. It has been performed in an ad hoc manner
so far, but we may make the translation in two standardized steps.
Let I and J stand for ideals, members of G. A formula ϕ in G♦

translates to ϕ′ in G, where ϕ′ is obtained by expanding =♦ and ⊆♦.
That is, ϕ′ is obtained by replacing all instances of I = J in ϕ with
(∃m)[I ∨ 〈m〉 = J ∨ 〈m〉], and replacing all instances of I ⊆ J with
(∃m)[I ∨ 〈m〉 ⊆ J ∨ 〈m〉].

The formula ψ in G corresponds to (∃M)[M is maximal & ψ′] in
I(Q), where ψ′ is obtained from ψ by replacing all instances of (∃I)
with (∃I ⊆ M) and all instances of (∀I) with (∀I ⊆ M), and likewise
for quantification over individual elements.

Recall our overall goal is to transfer information from E∗ to EΠ, or
equivalently, to I(Q). The isomorphism between E∗ and G♦ suggests a
three-step process, beginning in E∗ and traveling through G♦ and G on
the way to I(Q). As the information we are most interested in regards
orbits and invariant classes, in this section we explore the relationships
between automorphisms and invariance in the various structures under
consideration.

The property of being maximal is definable in I(Q), as is the property
of being principal (it is equivalent to being complemented; see [7]). The
following claim shows that maximality defines not only an invariant
class, but an orbit; in fact, a ∆0

1 orbit. It is easily verified from the 2<ω

perspective, recalling that a maximal ideal has a computable root set.
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Claim 5.1. Any two maximal ideals of I(Q) are computably automor-
phic.

For the following results, recall GM = [0,M ] specifies a particular
copy of G.

Claim 5.2. For GM with M maximal, any automorphism of GM ex-
tends to an automorphism of I(Q) of the same Turing degree.

Proof. Working via 2<ω, let f be the path of 2ω which is not in M . Let
I be an ideal in I(Q) and Φ an automorphism of GM . Extend Φ to a
map on I(Q), Ψ, as follows.

(5.1) Ψ(I) = Φ(I ∩M) ∨ {I ∩ {f � n : n ∈ ω}}.
It is clear that this image is a c.e. ideal. After some checking, one may
see Ψ is an automorphism.

The automorphism Ψ has the same Turing degree as the original Φ
because the right-hand set in the join in (5.1) is computably enumer-
able. Note that an ideal I ⊆M has the same image under Ψ as it did
under Φ. �

Theorem 5.3 ([7] 6.1, equivalent form). Every automorphism of I(Q)
is induced by a unique automorphism of Q.

Corollary 5.4. Every automorphism of GM with M maximal extends
to an automorphism of I(Q) which is induced by a unique M-preserving
automorphism of Q.

Corollary 5.5. Every automorphism of G is induced by a unique au-
tomorphism of M .

Next we speak of orbits in the three structures. André Nies showed
that an orbit in G induces an orbit in I(Q). The claim follows almost
immediately from the preceding results.

Claim 5.6 (Nies). For U an orbit of G, let UM denote U ’s isomorphic
copy in GM . Then EXT (U) =

⋃
{UM : M is a maximal ideal of Q} is

an orbit of I(Q) of the same complexity as U .

Proof. Closure of EXT (U) comes from the fact that containment in a
maximal ideal is definable. Transitivity follows from Claims 5.1 and
5.2. The complexity of the orbit does not increase because the map in
Claim 5.1 may be chosen to be computable. �

So far we have completed two of the three steps suggested for trans-
ferring information. The first step, E∗ to G♦, is trivial because of the
isomorphism. Claim 5.6 takes care of the third step, from G to I(Q), by
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associating orbits in I(Q) to orbits in G; the same procedure will work
with invariant classes. Unfortunately between G and G♦ the transfer
fails and we retain invariance but not, in general, orbits. Given U♦,
an orbit or invariant class in G♦, define U = {A : A♦ ∈ U♦}. The
collection U must be invariant because any automorphism of G which
takes an element in U to an element outside U will induce an auto-
morphism of G♦ which does the same thing to U♦. However, U will
not necessarily be an orbit even if U♦ was; that is, there may be ideals
A and B in the collection such that no automorphism f of G takes A
to B. The result draws on the idea of Cantor-Bendixson rank, and we
work in the Π0

1 class perspective.

Definition 5.7. The Cantor-Bendixson derivative of a Π0
1 class P is

D(P ) = P − {f : f is isolated in P}.

We may iterate the derivative to get D2(P ), D3(P ), etc., with
Dα(P ) =

⋂
β<αD

β(P ) for limit ordinals α. The Cantor-Bendixson

rank of P is the least ordinal α such that Dα(P ) = Dα+1(P ). Let
CB(P ) denote the Cantor-Bendixson rank of P .

Definition 5.8. The computable ordinals are the order types of
computable well-orderings of ω. The least non-computable ordinal is
Church-Kleene ω1, or ωCK

1 .

Theorem 5.9 (Kreisel [14], see [2]). The set of Cantor-Bendixson
ranks of Π0

1 classes, {α : (∃P )[CB(P ) = α]}, is exactly the set of
ordinals {α : α ≤ ωCK

1 }.

Theorem 5.10. Let A♦ ∈ G♦. The set {CB(P ) : P ∈ A♦} is closed
upwards in the ordinals ≤ ωCK

1 .

Proof. Let A ∈ A♦ such that CB(A) = α < ωCK
1 , and let β > α be a

computable ordinal or ωCK
1 . Supposing G = [N, 2ω], let p ∈ 2<ω such

that [p] ∩ N = ∅. From Theorem 5.9, let P be a Π0
1 class of rank β.

Let Q = (A ∩ [p]) ∪ {p_f : f ∈ P} is a Π0
1 class in A♦ of rank β. �

The following theorem is well-known.

Theorem 5.11. Cantor-Bendixson rank is Lω1ω-definable in the lan-
guage of inclusion, so preserved under automorphisms of EΠ or G.

Corollary 5.12. For any equivalence class A♦ in G♦ which contains
a Π0

1 class of Cantor-Bendixson rank < ωCK
1 , there are classes A,B ∈

A♦ which are not automorphic in G.
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Proof. By Theorems 5.9 and 5.10, X = {CB(P ) : P ∈ A♦} is a subset
of the ordinals ≤ ωCK

1 which is closed upward. Therefore for any
computable ordinal α ∈ X there is an ordinal β > α such that β ∈ X
also. Thus as long as there is some element of A♦ with computable
ordinal rank, there exist elements A, B of A♦ with different Cantor-
Bendixson rank. Since automorphisms of G must preserve Cantor-
Bendixson rank, A and B cannot be automorphic in G. �

Corollary 5.13. Any orbit Orb(A♦) of G♦ generated by a Π0
1 class A

such that CB(A) < ωCK
1 corresponds to an invariant class in G which

is not an orbit.

Corollary 5.13 leaves open the possibility of an orbit of Π0
1 classes

which are all of rank ωCK
1 . Let C be the collection of all ideals A which

satisfy the following formula, where quantifiers range over G.

(5.2)
(∃C ⊃ A)(∀B ⊆ C)(∃R)[R complemented & R ∩B = R ∩ A

& (∀X =♦ R ∩ C)[X noncomplemented]]

André Nies obtained (5.2) by direct translation of Harrington’s defini-
tion of creativity in E to G (see [19] XV.1.1). He has announced the
following theorem:

Theorem 5.14 (Nies). The collection of ideals C is nonempty and
forms an effective orbit in G.

C is the same collection of ideals as that obtained by pushing Har-
rington’s definition from E to G via E∗ and G♦, though the latter
process gives a seemingly weaker condition than (5.2). Thus we obtain
the result that all “creative ideals” must have Cantor-Bendixson rank
ωCK

1 , and have an example of an orbit which remains an orbit when
translated from E∗ to I(Q).

6. Degrees of Ideals and ♦-Equivalence Classes

The correspondence between ideals of 2<ω and ideals of Q preserves
degree, so when we show facts about degrees we may use either setting,
as convenient. Recall the notation that A is the Turing degree of A.

There is an ideal of every Turing degree. For the set W , let IW be
the ideal of 2<ω generated by the set

{0n+11 : n ∈ W}.
IW is clearly computable from W , and from IW we can compute its
root set, which gives W . Thus IW ≡T W .

Theorem 6.1. The set {A : A ∈ A♦} is closed upward in the c.e.
degrees.
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Proof. Without loss of generality, we work inM0 ⊂ 2<ω. Given A ⊆M0

and a c.e. degree B > A, choose a representative ideal B of degree B.

Let Ã be A with the interval [01] replaced by a copy of B; that is, let

01_τ ∈ Ã iff τ ∈ B. It is clear that Ã =♦ A and Ã ≥ B. In fact, since

B computes both A and B, Ã = B. �

Definition 6.2. A♦ = min{A : A ∈ A♦}, if this minimum exists.

This prompts the question of whether degree is a well-defined concept
in G♦, or if there are equivalence classes for which the minimum does
not exist. Definition 6.2 is analogous to the definition of degree of an
isomorphism class of models in computable model theory (for a survey,
see Knight [13]), and there are certainly isomorphism classes of models
without degree. The same is true here.

To construct an equivalence class in G♦ with no degree we build an
equivalence class containing an infinite descending sequence of degrees.
A similar idea was used by Richter in her thesis (see [18]), where among
other results she constructed a theory with no computable models, but
with models whose degrees form a minimal pair. The isomorphism
class of models of such a theory has no degree.

Let A be a c.e. ideal of 2<ω. Each B ∈ A♦ will be equal to A except
in a finitely generated ideal I. It is clear in I(2<ω) that we may choose
I such that A − I is also an ideal. Any difference between the degree
of B and that of A depends on the degree of B ∩ I. Since A − I and
B ∩ I are disjoint, B ≡T (A − I) t (B ∩ I) ≥T A − I. The degree of
a member of A♦, therefore, is at lowest the degree of A − I for some
finitely generated ideal I.

Recall that M0 ⊂ I(2<ω) is the ideal 2<ω−{0n : n ∈ ω}. To build an
equivalence class with no degree, in G = [∅,M0] we will build A such
that the degrees of {A∩ [0n1]}n∈ω form an infinite descending sequence.
First, we argue that the corresponding A♦ has no degree.

Claim 6.3. For any ideal A in the G specified above, if the degrees of
{A∩ [0n1]}n∈ω form an infinite descending sequence in the c.e. Turing
degrees, the equivalence class A♦ in G♦ has no degree. That is, the set
{B : B =♦ A} has no minimum element.

Proof. Suppose the ideal B =♦ A is of minimal degree in A♦. By
definition of ♦-equivalence, for some n, B ∩ [0n] = A∩ [0n]. Therefore,
as discussed above, B ≥T A ∩ [0n]. However, by the condition on A,
the degree of A∩ [0n] is the degree of A∩ [0n1], which is strictly greater
than the degree of A ∩ [0n+11] ≡T A ∩ [0n+1]. Therefore, the element
A ∩ [0n+1] ∈ A♦ has degree strictly less than that of B, which is a
contradiction. �
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To build such an A, we use the Sacks Splitting Theorem to construct
a uniformly c.e. sequence of c.e. sets of descending Turing degree. First
recall the original theorem.

Theorem 6.4 (Sacks Splitting Theorem). Let B and C be c.e. sets
such that C is noncomputable. Then there exist low c.e. sets A0 and
A1 such that:

(i) A0 ∪ A1 = B and A0 ∩ A1 = ∅, and
(ii) C 6≤T A1, for i = 0, 1.

See Soare [19], VII.3.2, for the proof.
The construction of A0, A1 in Theorem 6.4 is effective, so there is a

function f : ω×ω → ω such that forB = We and C = Wj, A0 = Wf(e,j).
We may iterate that function to obtain the following theorem.

Theorem 6.5. Let B be a noncomputable c.e. set. Then there exists
a uniformly c.e. sequence of c.e. sets {Bi}i∈ω such that:

(i) B0 = B,
(ii) Bi+1 <T Bi, for all i.

Proof. By Corollary VII.3.4 in [19], if C in Theorem 6.4 is set equal
to B, then ∅ <T Ai <T B for i = 0, 1. Therefore, in each splitting we
will let the set to be split play the role of both B and C in the original
theorem.

Let the function f be as defined above, taking a pair of indices to
an index for a splitting. Define the functions gi inductively, letting
g1(e, j) = f(e, j) and gi+1(e, j) = f(gi(e, j), gi(e, j)) for i > 0. Note
that g1(e, e) produces the index of a set B1, which is a split of B = We

such that ∅ <T B1 <T B. The index produced by g2(e, e) will be for a
split of B1 which is properly Turing-below B1, and so on.

Suppose the original set B is given by We. Then the desired sequence
is B0 = B, Bi = Wgi(e,e) for i > 0. �

Corollary 6.6. There exists a ♦-equivalence class with no Turing de-
gree.

Proof. Let {Bi}i∈ω be as in Theorem 6.5. Let the ideal A ∈ G be
generated by the set {0i1j0 : j ∈ Bi}. Then A ∩ [0i1] ≡T Bi, and A
meets the condition in Claim 6.3, so A♦ has no degree. �

The jump degree of an equivalence class A♦ ∈ G♦ is the minimum
degree in {A′ : A ∈ A♦}. Having degree implies having jump degree,
but the existence of a ♦-equivalence class with no degree leaves open
the following question.

Question 6.7. Is jump degree a well-defined concept in G♦?
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7. Degree Invariant Classes and Translation

We turn now to degree-theoretic concerns of G and G♦. For our
purposes there are two kinds of invariance, set invariance and degree
invariance, the latter defined below. Set invariance is the only kind
of invariance we have been discussing thus far, where a collection of
c.e. sets is invariant if it is closed under automorphisms of E . We will
also use the term “set invariant” for collections of ideals closed under
automorphisms of G or I(Q).

Definition 7.1. A collection of degrees C is invariant in E if there is
a collection of sets S such that

(i) For every degree d ∈ C, there is a set X ∈ S of degree d,
(ii) If X ∈ S has degree d, then d ∈ C, and
(iii) S is closed under automorphisms of E (S is set invariant).

To define degree invariance in G, everywhere in the definition above
replace E with G and “set” with “ideal.”

We would like to obtain degree invariance results for I(Q) using
the tools of G and G♦. If we could prove invariance of C in G♦, we
would have it for G also and thus for I(Q). The naive approach is
to push the corresponding invariant collection of sets, S, from E∗ to
G♦ and consider its degree structure. However, this is not viable.
Corollary 6.6 showed that Turing degree is not a well-defined concept
in G♦. However, even if it were, the isomorphism construction would
not guarantee that a c.e. set W had the same degree as the equivalence
class of W ’s image.

The alternative tactic is to work directly in G. One approach is
to begin with a degree-invariant class in E where the corresponding
class of sets S is neatly definable, such as the non-low2 degrees and
the atomless sets (see [19] XI.4, XI.5). Using concepts from G♦, we
may translate the definition of S to G and attempt to re-prove the
appropriate theorems. In that approach, each degree invariant class
must be translated individually. However, Cholak and Harrington [8]
have proved a more general result.

Theorem 7.2 ([8] 8.5). Let

C = {a : a is the Turing degree of a Σ0
3 set J ≥T 0′′}.

Let D ⊆ C such that D is upward closed in C. Then there is an L(A)
property ϕD(A) such that

(∀ c.e. F )[F ′′ ∈ D ⇔ (∃A)[ϕD(A) and A ≡T F ]].
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As a corollary this shows degree invariance of the non-lown and highn

degrees for n ≥ 2. We have the following conjecture.

Conjecture 7.3. The non-lown and highn classes of degrees, n ≥ 2,
may be shown invariant in G by use of the proper translation of Theo-
rem 7.2.

A translation of the double jump definability result would leave very
few open questions about degree invariance, namely the following.

Question 7.4. Are the high degrees invariant in G?

The high degrees were shown to correspond to the maximal sets by
Martin ([19] XI.1.5, 2.3). Maximality is definable, so the maximal sets
form an invariant class, and thus the high degrees are invariant in E .

Question 7.5. Is Turing-completeness invariant in G?

In E , the creative sets are the 1-complete sets, and 1-completeness
implies Turing-completeness. Harrington’s lattice-theoretic definition
of the creative sets ([19] XV.1.1) shows that the creative sets are an
invariant class, and so form an orbit of Turing-complete sets, answering
the E version of Question 7.5 affirmatively.

8. Transfer of Information from EΠ to E∗

Having found a way to move information from E∗ to EΠ, the next
question is whether we can work in the opposite direction. In par-
ticular, the array non-computable degrees, introduced by Downey,
Jockusch, and Stob [11], are an invariant class in EΠ, as shown in
Cholak, Coles, Downey, and Herrmann [7]. Is there a “reverse trans-
lation” by which we may show they are invariant in E? In EΠ, the
invariance is shown via perfect thin classes, and many other interesting
results in EΠ also involve thin and minimal classes.

Definition 8.1. An infinite Π0
1 class P is thin if every subclass of P is

relatively clopen in P . That is, for any Q ⊆ P , there is some principal
Π0

1 class C such that Q = P ∩ C.

Definition 8.2. An infinite Π0
1 class P is minimal if every subclass of

P is finite or cofinite in P .

A minimal class may be visualized as a tree with exactly one non-
isolated path, off of which an infinite number of isolated paths branch.
Notice that minimal classes are also thin, so results proved assuming
thinness hold for minimal classes. The following proposition says that
every thin member of G is trivial.
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Proposition 8.3. Suppose G = [N, 2ω] contains a thin Π0
1 class P .

Then P =♦ N .

Proof. Since P ∈ G, N ⊆ P . Therefore N is relatively clopen in P ;
that is, there is some principal C such that N = P ∩ C. But then
P = (P ∩ C) ∪ (P ∩ C) = N ∪ (P ∩ C). The complement of C is also
principal, so N ∪ (P ∩ C) =♦ N and P =♦ N . �

A perfect thin class is a thin class where every extendible node has
at least two infinite paths through it. A perfect tree may be visualized
as the complete tree, 2<ω, after it has been “stretched out” to possibly
add more nodes in between branching points. By Proposition 8.3,
the perfect thin classes are at best trivial members of any copy of G.
In fact they cannot be members of any G ⊂ EΠ with singleton least
element, because in a thin class a computable path must be isolated,
and there are no isolated paths in a perfect class. The results we use
to move from G to EΠ consider only copies of G which are maximal
(with singleton least element, from the EΠ perspective), and so new
techniques will have to be developed to prove degree invariance of the
array non-computable degrees in E .

9. An isomorphism between G♦ and E∗

Here begins the promised proof of the statement G♦∼= E∗, which is
the content of the remainder of the paper. The proof builds on the ∆0

3

automorphism machinery as developed by Cholak, Soare, Harrington,
and others ([6], [12]). I have followed the layout and notation in [12]
closely, and the construction and verification are laid out nearly identi-
cally. This segment is designed to be self-contained, so some definitions
are repeated from §2 and §3.

A summary for those already familiar with the ∆0
3 automorphism

method follows in §9.1 and §9.2. The definitions and exposition are in
§10-13. The construction itself is in §14, and the verification in §15.

9.1. Summary: definitions and basic changes. This subsection
and the next are directed at the reader who is familiar with the ∆0

3

automorphism method and whose primary interest is in where the iso-
morphism method differs. We refer specifically to Harrington and Soare
[12]; all references to the “original” construction are to that paper.

Denote the countable atomless Boolean algebra by Q, and the lat-
tice of c.e. ideals of Q by I(Q). The structure G is [0,M ] for any
nonprincipal c.e. ideal M ⊂ Q, an initial segment of I(Q). Define the
equivalence relation =♦ on G by

A =♦ B ⇐⇒ (∃m ∈M)[A ∨ 〈m〉 = B ∨ 〈m〉].
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The quotient structure G/=♦ is denoted G♦. For this construction, we
will fix a copy of G with M maximal.

We replace ω with M , letting ω̂ be as before. Player RED builds
an enumeration of c.e. ideals, {Un}n∈ω and one of c.e. sets, {Vn}n∈ω.

Player BLUE builds sets {Ûn}n∈ω and ideals {V̂n}n∈ω. State is defined
as before, where enumeration of ideals is as follows.

Ideal enumeration. Suppose we have already determined Js for J an
ideal. During stage s + 1, we may enumerate some finite collection of
elements of M into Js; call that collection X. At the end of stage s+1
we will close the ideal J with respect to Yλ,s+1, the set of all elements
on the tree. That is, we let Js+1 = 〈Js ∪X〉

⋂
Yλ,s+1. Since there are

only a finite number of elements on the tree at any stage, Js+1 will
be finite for every s ∈ ω. In this construction, ideal closure is always
effective, because membership in a principal ideal is computable.

Principal versus nonprincipal. Every nontrivial ideal is infinite, so
here we are concerned with the distinction between principal ideals
and nonprincipal ideals. Thus, we must amend our concept of “almost
every” x ∈ M . Instead of saying almost every x ∈ M have a property
ϕ if the set {x : ¬ϕ(x)} is finite, we require {x : ¬ϕ(x)} be contained
in a principal ideal.

(a.e. x)[ϕ(x)] ⇔ (∃m ∈M)(∀x ∈M)[¬ϕ(x) ⇒ x ∈ 〈m〉].
Likewise, we must replace “there exist infinitely-many x” (∃∞x) with

something more discerning. We say “there exists a nonprincipal col-
lection of x” (∃npx) as shorthand for (∀m ∈ M)(∃x 6∈ 〈m〉). That is,
there is an element outside every principal ideal of M . Membership in
a maximal ideal or a principal ideal is computable, so ∃npx is of the
same complexity as ∃∞x.

Complexity of sets of states. For a state to be well-visited with re-
spect to ideals means there is a nonprincipal collection of elements
which have that state at some time during the construction. Almost
every element leaves a non-well-resided state by the end of the con-
struction, in the new sense of “almost every.” The only changes from
the original definitions are from ∃∞x to ∃npx in each case. The fact
that ∃∞x and ∃npx have the same complexity means the properties of
a state being well-visited (§12.1) and non-well-resided (§12.3) are still
Π0

2 and Σ0
3, respectively.

Restrictions on the movement of x. In the original construction, the
size of a number n ∈ ω is used for several restrictions on n’s movement
and enumeration. In this construction, we use two replacements for
size. When all that is needed is a linear order on the elements of M ,
we use a fixed enumeration, essentially letting the “size” of x be the
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stage at which it is enumerated into M . When a stronger restriction
is needed, we require x be outside the principal ideal generated by
some initial segment of the enumeration of M . As in the original con-
struction, we manipulate only a finite subset of M at any given stage
of the construction. We are able to make the stronger restriction for
two reasons: first, M is nonprincipal, so there is always an element of
M independent of any given finite initial segment, and second, mem-
bership in a principal ideal is computable, so we can identify such an
independent element.

9.2. Summary: specific alterations. The chief point at which the
stronger replacement for size is used is in defining k+

β , the bound on

the set of elements which have non-well-visited α-states for α− = β
(Equation (12.7)). It is still a number, but now instead of requiring
x > k+

β in Steps 1 and 2, we require x be outside the principal ideal

generated by the first k+
β elements of M enumerated. This allows (and

in fact requires) the pockets of nodes α ⊂ f to contain a principal
collection of elements rather than a finite collection. Pockets of nodes
to the left of the true path still contain finitely-many elements, and
pockets to the right are emptied every time the final step (here, Step
6) is applied.

All mention of α-witnesses has been removed, as it is not necessary
that the isomorphism have any special properties. Correspondingly, we
do not split Sα, Rα, and Yα into S0

α, S1
α, and so on. Besides that, the

only change to Step 2 (moving elements down one level) is the change
in k+

β above. Step 1 (prompt pulling from the right to ensureMα ⊆ Eα)
has the additional restriction that the chosen x is independent of the
elements we have already seen in Rα; that is, x 6∈ 〈Yα,s〉. Steps 3, 4, 5,
and 6 (formerly 11) are unchanged.

Independence considerations must also be added to Lemmas 5.1 and
5.5 of the original construction. Lemma 5.1 (now Lemma 15.2) lists
the ways elements may move on the tree and be enumerated into sets;
in order to retain the usefulness of the lemma, we must restrict to enu-
merations such that the element is independent from what was already
in the ideal. Lemma 5.5 (now Lemma 15.6) cannot assert each ele-
ment is enumerated into only finitely many ideals, because Step 6 will
enumerate any given element into an infinite number of ideals, so the
enumerations Lemma 15.6 considers are restricted in the same way as
in Lemma 15.2. This change does not hamper the use of the lemma,
which is in asserting Steps 1-5 and 1̂-5̂ act finitely often between appli-
cations of Step 6. The only other lemma change is in Lemma 5.8 (here,
Lemma 15.9), which now shows that for α ⊂ f , Rα,∞ =♦ Yλ =♦ M .



INVARIANCE IN E∗ AND EΠ 23

10. Framework

Any terminology and notation not explicitly defined here may be
found in §11. Given two enumerations, {Un}n∈ω of ideals and {Vn}n∈ω

of sets, we build two enumerations, {Ûn}n∈ω of sets and {V̂n}n∈ω of

ideals. The Ûn are intended as images for the Un, and the V̂n are
intended as preimages for the Vn. We think of the correspondence in
terms of states, where a state ν is a collection of indices such that, for
x with state ν, x is in a set or ideal if and only if the index for that set
or ideal is in ν. The exact definition is as follows.

Definition 10.1. Let {Xn}n∈ω and {Yn}n∈ω be two sequences of c.e.
sets or ideals. The final e-state of x with respect to (w.r.t.) {Xn}n∈ω

and {Yn}n∈ω is ν(e, x) = 〈e, σ(e, x), τ(e, x)〉, where

σ(e, x) = {i : i ≤ e & x ∈ Xi}, and

τ(e, x) = {i : i ≤ e & x ∈ Yi}.

If a correspondence of ideals (Un, V̂n) and sets (Ûn, Vn) is to be an
isomorphism, it must certainly satisfy the following condition.

(10.1)
(∀ν)(∃npx ∈M)[ν(e, x) = ν w.r.t. {Un}n∈ω and {V̂n}n∈ω]

⇐⇒ (∃∞x̂ ∈ ω)[ν(e, x̂) = ν w.r.t. {Ûn}n∈ω and {Vn}n∈ω].

That is, the state corresponds to a nonprincipal ideal in G if and
only if the state corresponds to an infinite set in E .

We would like, then, to talk about the well-resided states. A state is
well-resided on the M side if the collection of elements which have that
state at the end of the construction is not contained in any principal
ideal (on the ω side, the collection must be infinite). However, we have
the limitation that our construction be ∆0

3, while being well-resided is
Π0

3. This necessitates worrying about the states as elements have them
during the construction, so we split the definition into two:

Definition 10.2. A state ν is well-visited on the M side if the col-
lection of elements which have state ν during the construction is not
contained in any principal ideal. On the ω side, ν is well-visited if
the collection of elements which have state ν during the construction is
infinite.

Definition 10.3. A state ν is non-well-resided on the M side (ω side)
if it is well-visited, but at the end of the construction, the collection of
elements with state ν is contained in a principal ideal (is finite).
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Well-visited is a Π0
2 property (see the definition of Fα in §12.1). Non-

well-resided is the complement of well-resided inside the set of well-
visited states. It does not immediately appear to be an improvement
over well-resided, since it is still Σ0

3 (see the definition of Nα in §12.3),
but we may approximate it with Π0

2 predicates which essentially say
“after this (fixed) value, nothing which enters the state stays.”

Since states are disjoint, all we need to know to have an automor-
phism is that the well-resided states coincide on the M side and the ω
side (Requirement (10.1)), which we will accomplish by ensuring the
well-visited states and the non-well-resided states coincide.

11. Initial Definitions

11.1. Enumerations, ideals, and the construction tree. Fix a
maximal idealM ⊂ Q. We map fromM to ω, but for clarity we rename
the image ω̂. Designate elements of M by lowercase Roman letters (x,
y, . . .), and natural numbers by hatted lowercase Roman letters (x̂,
ŷ, . . .). On the M side we have two indexings of the computably

enumerable subideals of M , {Un}n∈ω and {V̂n}n∈ω. On the ω̂ side we

likewise have two indexings of the c.e. sets, {Ûn}n∈ω and {Vn}n∈ω. The

enumerations {Un} and {Vn} are given; the enumerations {Ûn} and

{V̂n} are built in response as images and preimages, respectively. Note
that the hats on the V ideals and sets are reversed with respect to which
side they live in; this is the only place where such reversal takes place.
We view the construction as a game between two players. Player 1
(RED) controls the U ideals and V sets, and Player 2 (BLUE) controls

the Û ideals and V̂ sets.
The notation for ideals will be as follows. We fix an enumeration

{m0,m1, . . .} of M to use throughout the construction. Given that
fixed enumeration, let x C y indicate x is enumerated before y. Let
PEx be the principal ideal generated by all elements of M enumerated
up to and including x, and PCx the ideal generated by all elements
of M enumerated up to but not including x. When we know which
mi ∈M we are working with, we have the shorthand P<i := PCmi

and
P≤i := PEmi

. For X ⊆ M , we will also use the notation 〈X〉 to mean
the ideal generated by X. When X is a finite set {x1, x2, . . . , xn} listed
explicitly we may omit the curly braces and say 〈x1, x2, . . . , xn〉.

In the construction we will use a slightly different definition of ideal
enumeration than in §2. Previously for an ideal J , at stage s + 1 we
enumerated an additional element x into Js and let Js+1 be the principal
ideal 〈Js ∪ {x}〉. Here we consider only a finite initial segment Yλ,s of
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M at each stage s of the construction. During stage s + 1, we may
enumerate some finite collection X ⊂ M into Js. At the end of stage
s + 1 we will close the ideal J with respect to Yλ,s+1. That is, we let
Js+1 = 〈Js ∪X〉

⋂
Yλ,s+1, which will be finite for every s ∈ ω.

By analogy with (∃∞x) ≡ (∀n)(∃x > n) for ω, we define (∃npx)[ϕ(x)]
as (∀m ∈ M)(∃x ∈ M)[x 6∈ 〈m〉 & ϕ(x)]. Since M is maximal, and
membership in a maximal or principal ideal is computable, there is
no complexity increase over (∃∞x). Verbally this will be described as
a nonprincipal collection; a set which may not itself be an ideal, but
which cannot be contained in any principal ideal. Likewise, if “almost
every” (a.e.) x ∈M has a property ϕ, it means that the collection of x
which do not have ϕ is contained in a principal ideal. Recall that for
A and B, two subideals of M , A =♦ B if there is some m ∈ M such
that A ∨m = B ∨m. We will extend that notion to situations where
A and B are not necessarily ideals but simply sets of elements, so, for
example, A =♦ ∅ means A is contained in a principal subideal of M .
We will abuse terminology to refer to such a set A as “principal,” and
to a nonprincipal collection A as simply “nonprincipal.”

The construction takes place on a tree T , which we think of as a
subset of ωω, using coding. The tree T grows downward with its root,
λ, at the top. Each node α of T will control part of the construction.

For example, it may build a pair Uα, Ûα, where for some nα determined

by the length of α, Uα is intended as an approximation to Unα and Ûα

as its image Ûnα . Likewise, some nodes control V , V̂ pairs, and some
perform other tasks; see §11.3. T will be computable, and will have a
true path f . If the above node α is on the true path, then Uα =♦ Unα

and Ûα is the correct candidate for Ûnα . In this construction f is
not in general computable but instead is ∅′′-computable, which means
the sequences of images and preimages will have only a ∅′′-computable
(that is, ∆0

3) presentation. The definitions of f and T are in §13.
We use the notation for trees found in [19]. The set of all infinite

paths through T is denoted [T ]. Let nodes on the tree be designated by
lowercase Greek letters (α, β, γ, δ, . . .), where β ⊆ α (β ⊂ α) indicates
α extends (properly extends) β. When neither α ⊆ β nor β ⊆ α is
true, we write α ⊥ β. For two strings α and β, whether they are finite
or infinite, α∩β denotes the longest string which is a substring of both
α and β. Let λ denote the empty string. Let |α| denote the length of
α, and α− be the immediate predecessor of α if α 6= λ. Let α_β denote
the string formed by concatenating β to the end of α. When β is the
string composed of only one element b, we may write α_b for α_β.

Definition 11.1. Let α, β ∈ T .
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(i) For α ⊥ β, α is to the left of β (α <L β) if

(∃a, b ∈ ω)(∃γ ∈ T )[γ_a ⊆ α & γ_b ⊆ β & a < b].

(ii) α ≤ β if α <L β or α ⊆ β.
(iii) α < β if α ≤ β and α 6= β.
(iv) If h ∈ [T ], we say α <L h (h <L α, α < h, h < α) if there exists

β ⊂ h such that α <L β (β <L α, α < β, β < α, respectively).

11.2. Elements of M and ω̂ on the tree. We think of each element
of M and each natural number as being painted on a ball. At each
node α we place a pocket, called Sα, which can hold no more than a
principal collection of M -balls, and a pocket called Ŝα which can hold
finitely-many ω̂-balls. During the construction we pour balls into the
tree, always starting from the top, Sλ (Ŝλ). The balls will move on
the tree, sometimes being retrieved to a higher pocket but in general
moving downward. The ω̂-ball marked x̂ may move no lower than the
level with nodes of length x̂, and there may be other restrictions on
the movement of x̂. On the M side there are similar limitations on x,
described for both M and ω̂ in Steps 1 and 2 of the construction in
§14. For α ⊂ f , however, the collection of x (x̂) which are not at or
below α will be principal (finite).

The function α(x, s) (α̂(x̂, s)) will designate the location of ball x
(x̂) at the end of stage s. We will guarantee in the construction that
α(x) = lims α(x, s) (α̂(x̂) = lims α̂(x̂, s)) exists. For each stage s we
define

Sα,s = {x : α(x, s) = α},
Rα,s = {x : α(x, s) ⊇ α},
Yα,s =

⋃
{Rα,t : t ≤ s},

and likewise the hatted versions. The pocket Sα is called an α-section,
and Rα an α-region. The region Rα consists of all elements in pockets
at or below node α. We will prove that an element x can enter Rα

at most once; however, it might not remain, so Rα,∞ (defined below)
will be a d.c.e. set. Therefore we define the c.e. set Yα =

⋃
s Yα,s of

all elements which are in Rα at any point during the construction.
Another set we will find useful is

Y<α =
⋃
{Yδ : δ <L α},

the collection of all elements which ever enter the pockets of nodes to
the left of α.

Let Sα,∞ = {x : α(x) = α}, and Rα,∞ = {x : α(x) ⊇ α}. We will

ensure that if α ⊂ f , Rα,∞ =♦ Yα =♦ M (R̂α,∞ =∗ Ŷα =∗ ω), by
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guaranteeing that Rα,∞ is empty if f <L α and finite if α <L f , and
that every Sα,∞ is principal or finite.

We will also guarantee that balls move into Rα from Rα− , so that
Yα \ Yα− = ∅ (recall that A \ B is A − B together with the elements
of A ∩ B which are enumerated into A before entering B). During
the construction, the true path will be approximated by a computable
sequence of finite strings {fs}s∈ω, such that f = lim infs fs. This ap-
proximation to the true path will restrict the movement of elements on
the tree.

Definition 11.2. If fs <L α at some stage s such that x C ms (x̂ ≤ s),
the element x (x̂) is α-ineligible at all stages t ≥ s.

If x is α-ineligible at stages t ≥ s, we will require x 6∈ Sα,t (x̂ 6∈ Ŝα,t)
for all t ≥ s. The true path is defined in such a way that if α ⊂ f ,
the number of times we see fs <L α is finite, so only a finite number of
elements become α-ineligible.

11.3. States and the duties of α. Any given node α will either be

building a U , Û pair, building a V̂ , V pair, or thinking about non-well-
resided α-states (Definition 11.3, below). Accordingly, we must spread
out the U and V indices. Which nodes do what will depend on their
length, so we assign to each node α indices eα, êα which depend on |α|.
If α is building Uα, for instance, it will attempt to ensure Uα =♦ Ueα .
We begin by defining eλ = êλ = −1, and continue inductively according
to |α| as follows:

n Activity at α for |α| = n (mod 4)

0 Build Uα and Ûα (goal: α ⊂ f ⇒ Uα =♦ Ueα)

Vα, V̂α undefined
eα = eα− + 1; êα = êα−

1 Build V̂α and Vα (goal: α ⊂ f ⇒ V̂α =♦ V̂eα)

Uα, Ûα undefined
eα = eα− ; êα = êα− + 1

2 Consider new α-states ν believed to be non-well-resided on Yα

(see §12.3)

Uα, Ûα, Vα, V̂α undefined
eα = eα− ; êα = êα−

3 Consider new α-states ν̂ believed to be non-well-resided on Ŷα

(see §12.3)

Uα, Ûα, Vα, V̂α undefined
eα = eα− ; êα = êα−
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Since it only makes sense to think about whether x is in Uα, say,
when |α| = 0 (mod 4) (that is, when eα = eα− + 1), we adjust our
concept of e-state to α-state.

Definition 11.3. (i) The α-state of x at stage s is

ν(α, x, s) = 〈α, σ(α, x, s), τ(α, x, s)〉, where

σ(α, x, s) = {eβ : β ⊆ α & eβ > eβ− & x ∈ Uβ,s}, and

τ(α, x, s) = {êβ : β ⊆ α & êβ > êβ− & x ∈ V̂β,s}.

(ii) The final α-state of x is

ν(α, x) = 〈α, σ(α, x), τ(α, x)〉,

where σ(α, x) = lims σ(α, x, s) and τ(α, x) = lims τ(α, x, s).
(iii) The only λ-state is ν−1 = 〈λ, ∅, ∅〉.

The α-state of x̂ has the dual definition to the above.
For ease of discussion, we define some orderings and operations on

states.

Definition 11.4. Given α-states ν0 = 〈α, σ0, τ0〉 and ν1 = 〈α, σ1, τ1〉,
we define the following inequalities, with the strict version of each de-
fined as expected.

(i) ν0 ≤B ν1 if σ0 = σ1 and τ0 ⊆ τ1 (BLUE claims more V̂ ideals).
(ii) ν0 ≤R ν1 if σ0 ⊆ σ1 and τ0 = τ1 (RED claims more U ideals).

(iii) ν̂0 ≤B ν̂1 if σ̂0 ⊆ σ̂1 and τ̂0 = τ̂1 (BLUE claims more Û sets).
(iv) ν̂0 ≤R ν̂1 if σ̂0 = σ̂1 and τ̂0 ⊆ τ̂1 (RED claims more V sets).

Note that considering ν̂0 and ν̂1 to be ν0 and ν1 read with respect to

Û and V rather than U and V̂ , we get the following correspondence:

(11.1) [ν0 ≤R ν1 ⇔ ν̂0 ≤B ν̂1] & [ν0 ≤B ν1 ⇔ ν̂0 ≤R ν̂1]

Definition 11.5. Given α ∈ T , β ⊆ α, and an α-state ν0 = 〈α, σ0, τ0〉,
a set of α-states Cα, or a finite set of α-states {ν(α, σi, τi) : i ∈ I}:

(i) ν0 � β = 〈β, σ1, τ1〉, where σ1 = σ0∩{0, . . . , eβ} and τ1 = τ0∩{0, . . . , êβ}.
(ii) Cα � β = {ν � β : ν ∈ Cα}.
(iii) ν1 � ν0 (“ν0 extends ν1”) if ∃β such that ν0 � β = ν1.
(iv)

⋃
{ν(α, σi, τi) : i ∈ I} = 〈α, σ, τ〉 where σ =

⋃
{σi : i ∈ I} and

τ =
⋃
{τi : i ∈ I}.
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12. Keeping Track of the Residedness of States

12.1. Well-visited states. For each α ∈ T we define a number of
sets of α-states. The set Fα is the collection of α-states ν which are
well-visited by elements x while they are in Rα. Adding the restriction
that x must have the state ν when it first appears in Rα (which is to
say, when it first appears in Sα) gives the set Eα ⊆ Fα. Each of these
sets also has a dual. The explicit definitions are

Eα = {ν : (∃npx)(∃s)[x ∈ Sα,s −
⋃
{Sα,t : t < s} & ν(α, x, s) = ν]}

Fα = {ν : (∃npx)(∃s)[x ∈ Rα,s & ν(α, x, s) = ν]}
where the duals are obtained by hatting appropriately and replacing
(∃npx) with (∃∞x̂).

To meet the automorphism requirement (10.1), we must have

(12.1) F̂α = {ν̂ : ν ∈ Fα}

for α ⊂ f . To achieve (12.1), each node α will also have an associated
set Mα, the set of α-states α believes to be well-visited. At every
node α we require Mα � α− = Mα− . For α ⊂ f , we will prove that
Mα ⊆ Eα and Fα ⊆ Mα to get Mα = Fα = Eα. Depending on the
length of α, Fα ⊆Mα will either be proved directly or by proving the
following three conditions.

(12.2) Eα ⊆Mα

(12.3)
(a.e. x)[if x ∈ Yα,s, ν0 = ν(α, x, s) ∈Mα, and BLUE causes
enumeration of x so that ν(α, x, s+ 1) = ν1, then ν1 ∈Mα]

(12.4)
(a.e. x)[if x ∈ Yα,s, ν0 = ν(α, x, s) ∈Mα, and RED causes
enumeration of x so that ν(α, x, s+ 1) = ν1, then ν1 ∈Mα]

Condition (12.2) will be met by exerting tight control of the entry
of elements into Sα. Condition (12.3) will be met by ensuring Mα is
sufficiently closed with respect to BLUE’s possible enumerations; that
is, by making sure α ⊂ f is M-consistent.

Definition 12.1. A node α is M-inconsistent if eα > eα− and there
exist α-states ν0 <B ν1 such that ν0 ∈ Mα, ν1 � α− ∈ Mα−, but
ν1 6∈ Mα. Otherwise α is M-consistent.

The dual notion is
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Definition 12.2. A node α is M̂-inconsistent if êα > êα− and there

exist α-states ν̂0 <B ν̂1 such that ν̂0 ∈ M̂α, ν̂1 � α− ∈ M̂α−, but

ν̂1 6∈ M̂α. Otherwise α is M̂-consistent.

Condition (12.4) will be met via the dual case. By (12.2), Mα con-
tains many of the well-visited states: every one which is witnessed
sufficiently by elements as they enter Rα. Together (12.3) and (12.4)
guarantee that all of the states which are witnessed to be well-visited
by elements which are already in Rα are also in Mα, giving Fα ⊆Mα.

The dual M̂α is defined as

(12.5) M̂α = {ν̂ : ν ∈Mα}.

In the verification we will prove that M̂α = F̂α = Êα as well, so that
(12.1) is satisfied and the well-visited α-states coincide on the M and
ω̂ sides.

12.2. Avoiding circularity. Although the intention forMα is that it
be equal to Fα, we must be able to determine from the node α− which
extension to take. Since Fα is dependent on the particular α chosen,
we now define a set which depends only on α−. For β = α−, the new
set F+

β will be such that for α ⊂ f , Mα = F+
β = Fα.

Fix α ∈ T such that eα > eβ for β = α−. Define the c.e. set
Zeα =

⋃
s Zeα,s where

Zeα,s+1 = {x : x ∈ Ueα,s+1 & x ∈ Yα−,s}.
Define a new α-state ν+(α, x, s) exactly as for ν(α, x, s) (Definition
11.3) but with Zeα,s in place of Uα,s. Note that we are only changing
(possibly) the last place of ν(α, x, s). Define F+

β and k+
β as follows.

(12.6) F+
β = {ν : (∃npx)(∃s)[x ∈ Yβ,s & ν+(α, x, s) = ν]}.

(12.7)
k+

β = min{y : (∀x B my)(∀s)[[x 6∈ P<y &
x ∈ Yβ,s & ν+(α, x, s) = ν1] −→ ν1 ∈ F+

β ]}.

The value k+
β is the bound on the set of elements which have non-

well-visited states (since there are only a finite number of α-states,
only a principal collection of elements can have non-well-visited states).
The object is to keep elements in P<k+

β
out of Yα. We also define

F̂+
β = {ν̂ : ν ∈ F+

β }. If α ∈ T , β = α− are such that êα > êβ, we define

F̂+
β and k̂+

β using the duals to (12.6) and (12.7).
Along with Mα, every α ∈ T will have a kα such that if α ⊂ f ,

kα = k+
β . If eα = eβ and êα = êβ, we define F+

β = Fβ, k+
β = kβ, and

likewise for the duals. We allow x to enter Yα only if x 6∈ P<kα (to
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enter Ŷα, x̂ must be greater than k̂α). Therefore if there is an element
allowed into Yα which has a state α considers non-well-visited, we have
a witness that kα is wrong.

Definition 12.3. If (∃x)(∃s)[x ∈ Yα,s & ν(α, x, s) 6∈ Mα], then α is
provably incorrect at all stages t ≥ s.

Nodes α which are provably incorrect are kept off the true path.

12.3. Non-well-resided states. As with well-visited states, we define
several sets of states related to non-well-residedness for each node α.
The set of non-well-resided α-states is

Nα = {ν1 : ¬(∃npx)[x ∈ Yα & ν(α, x) = ν1]}.

Likewise we define N̂α. As with the well-visited states in requirement
(12.1), we must show for all α ⊂ f that

(12.8) N̂α = {ν̂ : ν ∈ Nα}.
While Fα and Eα are Π0

2, and so can be guessed at (almost) directly
in the construction, Nα is Σ0

3 and so requires approximation. The Π0
2

approximation will be the disjoint union of two sets Rα and Bα, which
correspond to states α believes are non-well-resided and emptied by
RED or BLUE respectively.

We defineRα, Bα, and their duals inductively. Fix α ∈ T and assume

Rγ, Bγ, R̂γ, and B̂γ have been defined for all γ ⊂ α. We define all four
sets as disjoint unions, e.g.,

Rα = Rα
α tR<α

α .

Define
R<α

α = {ν : ν ∈Mα & ν � α− ∈ Rα−}.
The set B<α

α is defined as above but with Bα− in place of Rα− , and

B̂<α
α and R̂<α

α are defined likewise, with appropriate hatting. If |α| 6≡ 2
(mod 4), we set

Rα
α = B̂α

α = ∅;
they might be nonempty otherwise. Note that when |α| ≡ 2 (mod 4),
R<α

α depends only on nodes up to α− because at such an α, eα = eα−

and êα = êα− , so Mα = Mα− .
If |α| ≡ 2 (mod 4), we define the Π0

2 predicate

F (α−, ν) ≡ (∀x)[x ∈ Yα− −→ (ν(α, x) 6= ν ∨ x ∈ P≤|α−|)].
F (α−, ν) says that any element with state ν at the end of the con-
struction is in the ideal generated by the first |α−| elements of M
enumerated. That is, α− witnesses that ν corresponds to a principal
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ideal and is thus non-well-resided. Note also that as with F+
β , F (α−, ν)

avoids circularity, since α-state depends only on |α|. Having defined
F (α−, ν), we let Rα

α be nonempty, allowing α ⊂ f only if

Rα
α = {ν : ν ∈Mα − (R<α

α ∪ B<α
α ) & F (α−, ν)}.

Also for |α| ≡ 2 (mod 4), we define

B̂α
α = {ν̂ : ν ∈ Rα

α}.

If |α| 6≡ 3 (mod 4), we set

R̂α
α = Bα

α = ∅.

If |α| ≡ 3 (mod 4), we allow R̂α
α 6= ∅, defining the predicate F̂ (α−, ν̂)

as follows.

F̂ (α−, ν̂) ≡ (∀x̂)[[x̂ > |α−| & x̂ ∈ Ŷα− ] → ν̂(α, x̂) 6= ν̂]

Again, the requirement is that for α ⊂ f ,

R̂α
α = {ν̂ : ν̂ ∈ M̂α − (R̂<α

α ∪ B̂<α
α ) & F̂ (α−, ν̂)}

and we define

Bα
α = {ν : ν̂ ∈ R̂α

α}.
It will be BLUE’s responsibility to change the state of elements x

such that ν(α, x, s) ∈ Bα, for x ∈ Rα, which takes care of half of the
approximation. For Rα, we know that if α ⊂ f , Rα will in fact be
non-well-resided, so

(12.9)
(∀ν ∈ Rα)(a.e. x ∈ Yα)(∀s)[ν(α, x, s) = ν −→

(∃t > s)[ν(α, x, t) 6= ν]].

Therefore BLUE can wait for RED to move elements out of states in
Rα. This leads to the definition of another kind of consistency. Since
α ⊂ f means that all states in Rα must be emptied by RED, for every
state in Rα there must be a state reachable in RED moves which is
not non-well-resided. Furthermore, since there are only a finite number
of α-states, at least one such state must also be well-visited. This is
another closure property of Mα, as was M-consistency.

Definition 12.4. A node α ∈ T is R-consistent if

(∀ν0 ∈ Rα)(∃ν1 ∈Mα)[ν0 <R ν1]

and R-inconsistent otherwise.

The dual notion is



INVARIANCE IN E∗ AND EΠ 33

Definition 12.5. A node α ∈ T is R̂-consistent if

(∀ν̂0 ∈ R̂α)(∃ν̂1 ∈ M̂α)[ν̂0 <R ν̂1]

and R̂-inconsistent otherwise.

As with M-consistency, we will require α ⊂ f to be R-consistent.

Therefore for α ⊂ f , using (11.1) and the definition of B̂α we know

(12.10) (∀ν̂0 ∈ B̂α)(∃ν̂1 ∈ M̂α)[ν̂0 <B ν̂1].

Note that Equation (12.10) and Definition 12.4, via repeated applica-
tion, guarantee after some number of iterations of moves by BLUE or

RED we can get out of B̂α or Rα, respectively. Thus, for every state
α believes to be emptied by BLUE, there must be a state which α be-
lieves to be well-visited and not emptied by BLUE which is reachable
by the BLUE moves. That motivates the following definition.

Definition 12.6. A function ĥα : B̂α → (M̂α−B̂α) is a target function
if

(∀ν̂ ∈ B̂α)[ν̂ <B ĥα(ν̂)].

Dually, hα : Bα → (Mα − Bα) is a target function if

(∀ν ∈ Bα)[ν <B hα(ν)].

The notes preceding the definition assert the existence of such an hα

for α ⊂ f . We will require that for almost every x ∈ Bα, BLUE must
move x to the target state hα(ν(α, x, s)).

Since Rα and Bα are approximations, we must make sure that using
them we empty exactly the states in Nα. By the use of F (α−, x) in the
definition of Rα, we know Rα ∪ Bα ⊆ Nα. In order to guarantee we
empty all states in Nα, it is sufficient to make sure that if α ⊂ f and
ν0 ∈ Nα, there is some γ ⊇ α such that γ ⊂ f and for all ν1 ∈Mγ which
extend ν0, ν1 ∈ Rγ ∪ Bγ. Removing references to Nα, the statement
we must prove is

(12.11)
(∀α ⊂ f)(∀ν0 ∈Mα)(¬∃npx)[x ∈ Yα & ν(α, x) = ν0] =⇒

(∃γ)[α ⊆ γ ⊂ f & {ν1 ∈Mγ : ν1 � α = ν0} ⊆ Rγ ∪ Bγ]

along with its dual. To check this, fix some α ⊂ f and ν0 ∈ Mα such
that the hypothesis of (12.11) holds. Since α ⊂ f we know Yα =♦ M ,
so we can find some i such that for all x ∈M , x 6∈ P≤i ⇒ ν(α, x) 6= ν0.
Choose γ ⊂ f such that α ⊆ γ, |γ| > i, and |γ| ≡ 2 (mod 4). Consider
any ν1 ∈ Mγ such that ν1 � α = ν0. If ν1 is not in R<γ

γ ∪ B<γ
γ , then

F (γ−, ν1) holds, so by definition of Rγ
γ for γ ⊂ f , ν1 ∈ Rγ

γ. The dual
statement is proved likewise.
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Finally, we note that since Bα and B̂α are defined as duals to Rα and

R̂α, again using (11.1), to show all of the states in these four sets are
emptied it suffices to prove

(12.12) (∀ν0 ∈ Bα)[{x : ν(α, x) = ν0} =♦ ∅]
and its dual.

13. The Definition of the Tree and the True Path

First we collect our notions of consistency, allowing a node on the
tree to have successors only if it satisfies all such notions.

Definition 13.1. A node α ∈ T is consistent if it is M-, M̂-, R-,

and R̂-consistent.

In the following definition, the intended meanings of Mα, Rα, Bα,
and kα have already been explained. The number cα ∈ ω is an ad-
ditional empty symbol that will guess a Σ0

3 predicate; its function is
explained below, in Definition 13.5 and the remarks that follow it.

Definition 13.2 (T , the construction tree). Put λ ∈ T , and let Mλ,
Rλ, and Bλ all be empty. Define kλ = eλ = êλ = −1. If β ∈ T ,
put α = β_〈Mα,Rα,Bα, kα, cα〉 in T provided it meets the following
conditions:

(i) β is consistent.
(ii) Mα is a set of α-states; Rα,Bα ⊆Mα; Rα ∩ Bα = ∅.
(iii) Mα � β = Mβ.
(iv) (eα = eα− & êα = êα−) ⇒Mα = Mβ.
(v) R<α

α ⊆ Rα; B<α
α ⊆ Bα.

(vi) Rα
α 6= ∅ ⇒ |α| ≡ 2 (mod 4); Bα

α 6= ∅ ⇒ |α| ≡ 3 (mod 4).

In addition, each α ∈ T has associated dual sets M̂α, R̂α, and

B̂α, determined from Mα, Rα, and Bα, respectively, as well as inte-
gers eα and êα depending only on |α|. Recall that we are associating
〈Mα,Rα,Bα, kα, cα〉 with an integer under some effective coding so
that we may regard T as a subset of ω<ω.

Definition 13.3. The true path f ∈ [T ] is defined by induction on n.
If β = f � (n− 1) has been defined and is consistent, then f � n is the
<L-least length-n extension α of β such that the following hold:

(i) n ≡ 0 (mod 4) =⇒ Mα = F+
β and kα = k+

β .

(ii) n ≡ 1 (mod 4) =⇒ M̂α = F̂+
β and kα = k+

β .

(iii) n ≡ 2 (mod 4) =⇒ Rα
α = {ν : ν ∈Mα − (R<α

α ∩ B<α
α ) & F (β, ν)}

and B̂α
α = {ν̂ : ν ∈ Rα

α}.
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(iv) n ≡ 3 (mod 4) =⇒ R̂α
α = {ν̂ : ν̂ ∈ M̂α − (R̂<α

α ∩ B̂<α
α ) & F̂ (β, ν)}

and Bα
α = {ν : ν̂ ∈ R̂α

α}.
(v) Unless otherwise specified above, Mα, Rα, Bα, and kα have the

values Mβ, Rβ, Bβ, and kβ, respectively, as in Definition 13.2.
(vi) The set Cα, defined below in Definition 13.5, is infinite.

For a consistent β = f � n, note that F+
β is just a finite set of

states and k+
β is an integer, so we may find α satisfying Conditions

(i)-(v) of the definition. In fact, it is clear that there are unique Mα

and kα satisfying the conditions. To see the same for Rα, recall from
§12.3 that Rα = Rα

α t R<α
α , where R<α

α depends only on β, and Rα
α

is uniquely determined by Conditions (iii) and (v). Likewise, Bα is
uniquely determined by Conditions (iv) and (v). We will show that of
the α meeting (i)-(v), there is a unique α meeting (vi) (see Definition
13.5 and the remarks that follow). Hence, as long as every node on
f is consistent, which will be proved in Lemmas 15.10 and 15.12, f is
infinite.

Condition (vi) of Definition 13.3 is included so we may approximate
the true path during the isomorphism construction. We will now define
Cα. Recalling the remarks in §10 and §12, we see that Conditions (i)-
(v) of Definition 13.3 are uniformly ∆0

3 in β, and thus also uniformly
Σ0

3 in β. The following lemma is a modification of Lemma 2.35 in
Cholak [6], which is an easy modification of Theorem IV.3.4 in Soare
[19]. Define A to be the following set:

{(α, β) : α satisfies Conditions (i)-(v) of Definition 13.3 w.r.t. β}.
The set A is uniformly ∆0

3 and hence Σ0
3.

Lemma 13.4. Let A be defined as above. Since A is Σ0
3, then there is

a computable function g such that

x ∈ A ⇐⇒ (∃!c)[|Wg(x,c)| = ∞]

and
x 6∈ A ⇐⇒ (∀c)[|Wg(x,c)| <∞].

Definition 13.5. Let g be the function given by Lemma 13.4. For
x = (α, β), where α = β_〈Mα,Rα,Bα, kα, cα〉, the chip set Cα is the
set Wg(x,cα).

We will use the chip sets in §14, Step 6A, to define the true path
approximation, a computable sequence of finite strings {fs}s∈ω such
that f = lim infs fs. For any consistent β, there are unique Mα, Rα,
Bα, and kα satisfying Conditions (i)-(v) of Definition 13.3, and hence
there is a unique α such that Cα is infinite. Therefore the chip sets
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form a computable sequence of c.e. sets, {Cα}α∈T , such that α ⊂ f iff
β = α− is on the true path and |Cα| = ∞.

We included cα in the node α so we could attach a particular chip
set to each node of the tree. Once cα is included in the node, there are
an infinite number of paths through the tree that satisfy Conditions
(i)-(v) of Definition 13.3 at every level. Condition (vi) is then included
to ensure the uniqueness of the true path f .

Given the sequence {Cα}α∈T , fix a simultaneous computable enu-
meration {Cα,s}α∈T,s∈ω for use in §14, Step 6A.

To ensure Mα ⊆ Eα, we define L, a list of elements of the form
〈α, ν1〉, such that ν1 ∈ Mα. Loosely speaking, we allow an element x
into Sα,s+1 only when there is an unused entry 〈α, ν1〉 ∈ Ls such that x
may be enumerated in such a way as to give ν(α, x, s+1) = ν1. In such
a case we mark the entry 〈α, ν1〉. Ls is augmented with new elements

beginning with α at any stage s such that it and L̂s are both α-marked ;

that is, all entries of the form 〈α, ν1〉 on L (〈α, ν̂1〉 on L̂s) have been

marked. The value m(α, s) is the number of times L and L̂ have been
α-marked by the end of stage s. It does not have a hatted version.

14. The Construction

Steps 1-5 below, their duals 1̂-5̂, and a final Step 6, produce the
isomorphism. The duals should be clear; in cases where there may
be ambiguity, it is explicitly noted. The “purpose of” remarks after
some steps may contain statements to be proved in §15. There is one
remaining definition we need for the construction.

Definition 14.1. To initialize a node α means to remove every
x ∈ Sα,s (x̂ ∈ Ŝα,s), and put x into Sβ,s (x̂ into Ŝβ,s) for β = α ∩ fs+1.

Stage s=0: For all α ∈ T define Uα,0 = Vα,0 = Ûα,0 = V̂α,0 = ∅ and
m(α, 0) = 0. Define Yλ,0 = Yλ,0 = ∅ and f0 = λ.

Stage s+1: Find the least n < 6 such that Step n’s hypotheses are
satisfied for some x ∈ Yα,s and perform Step n’s action. If there is no
such n, find the least n < 6 such that some Step n̂ applies. If all of
those fail to apply, apply Step 6. At the end of every step, close all

ideals Uα, V̂α with respect to Yλ,s+1.

In the following steps, let x ∈ Yλ,s (x̂ ∈ Ŷλ,s) and α ∈ T , α 6= λ,
be arbitrary, and let β = α−. Recall that x C y means in the fixed
enumeration of M , x is enumerated before y. PEx is the ideal generated
by all elements of M enumerated up to and including x, and PCx is
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the ideal generated by all elements of M enumerated up to but not
including x. Letting M = {m0, . . . ,mi, . . .}, we have the shorthand
P<i := PCmi

and P≤i := PEmi
.

Step 1: Let 〈α, ν1〉 be the first unmarked entry of L (ν1 = 〈α, σ1, τ1〉;
note that by the definition of L, ν1 ∈ Mα). Look for x meeting the
following conditions.

Size

1: x 6∈ P<kα (in 1̂, x̂ > k̂α), x B m|α|
2: x is α-eligible
3: x B mm(α,s)

Location

4: x ∈ Rβ,s − Yα,s

5: ¬(α(x, s) <L α)

State and Independence

6: ν(β, x, s) = ν1 � β
7: eα > eβ ⇒ ν+(α, x, s) = ν1

8: x 6∈ 〈Yα,s〉 (absent from 1̂)

Choose the least such x (with respect to C) and perform the following
actions.

9: mark the list entry 〈α, ν1〉.
10: put x into Sα

11: if eα > eβ and eα ∈ σ1, then put x into Uα,s+1

12: if êα > êβ and êα ∈ τ1, then put x into V̂α,s+1

Purpose of Step 1: If α ⊂ f and ν1 ∈ Mα, then L will have an
infinite number of entries of the form 〈α, ν1〉 put on it and later marked.
Each time such an entry is marked, an element x, which is not in the
principal ideal of Yα,s, is put into Sα for the first time and given state
ν1. Since that happens an infinite number of times, ν1 is well-visited
by independent elements when they first appear in Sα; i.e., ν1 ∈ Eα

and Mα ⊆ Eα.

Step 2: Look for x and α meeting the following conditions.

1: x ∈ Sβ,s

2: x B m|α|, x 6∈ P<kα (in 1̂, x̂ > k̂α)
3: x is α-eligible
4: x C mm(α,s) (contrast with 1.3)
5: α is the leftmost γ ∈ T such that when you put γ in for α and
γ− in for β, 2.1-2.4 are satisfied

Choose the least such pair 〈α, x〉 (with respect to node length and C)
and move x from Sβ to Sα.
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Purpose of Step 2: If α ⊂ f , this ensures Rα =♦ M (R̂α =∗ ω). We
control with condition 2.4 in order to slow the flow down the tree. This
keeps us from pouring too many elements down a path which is not f ;
m(α, s) →∞ iff α ⊂ f , so this bounds how much may move down into
nodes α which are not on f .

Step 3: Look for x and α meeting the following conditions.

1: eα > eβ

2: x ∈ Sα,s

3: ν(α, x, s) = ν0 ∈Mα

4: (∃ν1)[ν0 <B ν1 & ν1 � β ∈Mβ & ν1 6∈ Mα]

Choose the least such pair 〈α, x〉 (with respect to node length and C)

and enumerate x into V̂δ,s+1 for all δ ⊂ α such that eδ ∈ τ1.
Purpose of Step 3: If α is M-inconsistent (which means exactly condi-
tions 3.1, 3.3, 3.4), witnessed by x ∈ Sα (condition 3.2), then we give
x the state ν1 to make α provably incorrect (which means there is an
element in the region, in particular, x, which has a state α considers
non-well-visited). This knocks α off of f .

Step 4: Look for x ∈ Rα,s meeting the following conditions.

1: eα > eβ

2: x 6∈ Uα,s

3: x ∈ Zeα,s

Choose the least such pair 〈α, x〉 (with respect to node length and C)
and enumerate x into Uα,s+1.

Step 5: Look for x and α satisfying the conditions of one of the fol-
lowing two cases.

Case 1

1: ν(α, x, s) = ν0 ∈ Bα, say ν0 = 〈α, σ0, τ0〉
2: x ∈ Sα,s

3: α is M-consistent and R-consistent

Case 2

1: ν(α, x, s) = ν0 ∈ Bα, say ν0 = 〈α, σ0, τ0〉
4: x ∈ Sδ,s where δ− = α
5: δ is either M-inconsistent or R-inconsistent

In either case, choose the least such 〈α, x〉 (with respect to node length
and C). We want to progress toward emptying Bα by changing x’s
state. Let ν1 = hα(ν0), which will be BLUE-greater than ν0 (by defi-

nition of hα), ν1 = 〈α, σ1, τ1〉. Enumerate x into V̂γ for all γ ⊆ α such

that êγ > êγ− and eγ ∈ τ1 − τ0 (that is, we considered a new V̂ set
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at γ and it was in the chosen extension to x’s α-state). This makes
ν(α, x, s+ 1) = ν1.

Step 6:

6A: Define δt by induction for t ≤ s + 1. Let δ0 = λ. Given
δt, let v ≤ s be maximal such that δt ⊆ fv if such a v exists,
and let v = 0 otherwise (v is the most recent stage at which
the true path appeared to go through δt). Choose the <L-least
α ∈ T such that α− = δt and Cα,s 6= Cα,v. If such an α exists,
define δt+1 = α. If not, define δt+1 = δt. That is, look for the
leftmost node which extends δt by one and which has increased
its chip set since the last time you were at that node (because
α ⊂ f ⇐⇒ |Cα| = ∞) and go through there.

Define fs+1 = δs+1.

6B: For every α ⊆ fs+1 such that both Ls and L̂s are α-marked
(every entry beginning with α is marked), do the following:

1: define m(α, s+ 1) = m(α, s) + 1
2: add to the bottom of Ls a new unmarked α-entry 〈α, ν〉

for every ν ∈Mα. Do likewise for L̂s.
After doing the above for all relevant α, let Ls+1 be the aug-

mented Ls and likewise for L̂s+1. If no such α exists, let the
stage s+ 1 version of everything equal the stage s version.

6C: Empty Rα to the right of fs+1: initialize all α to the right of
fs+1. That is, pull all the balls in α’s pockets up to where α
branches off from fs+1.

6D: Add balls to the machine: choose the C-least x 6∈ Yλ,s such

that x C ms (<-least x̂ 6∈ Ŷλ,s such that x < s) and put x into

Sλ (x̂ into Ŝλ). For each x ∈ Yλ,s+1, let α(x, s + 1) denote the
unique γ such that x ∈ Sγ,s+1, and likewise for all x̂.

15. The Isomorphism Theorem and Verification

Theorem 15.1 (Isomorphism Theorem). Suppose c.e. ideals {Uα}α∈T

and {V̂α}α∈T and c.e. sets {Ûα}α∈T and {Vα}α∈T are enumerated by the
construction in §14 using Steps 1-5, 1̂ -5̂ , and 6. Then the correspon-

dence Uα ↔ Ûα, V̂α ↔ Vα, α ⊂ f , defines an isomorphism between G♦

and E∗.

The proof of the theorem is split into the following thirteen lemmas.
Lemmas 15.3, 15.7, 15.8, 15.11, and 15.14 have no duals. The remaining
lemmas have a dual case whose proof should be clear from the proof
as written.
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Lemma 15.2. At stage s+ 1,

(i) if x enters Rα, α 6= λ, it is via Step 1 or Step 2 applying to α and
x;

(ii) if x moves from Sα to Sδ, it is via one of the following three steps:
(a) Step 1 applies to δ and x (δ <L α or δ− = α);
(b) Step 2 applies to δ and x (δ− = α);
(c) Step 6C applies to α (fs+1 <L α);

(iii) if x ∈ Sα,s is enumerated in a RED set Uα,s+1 such that x is
not generated by the elements in Uα,s, it is via Step 1 or Step 4
applying to α and x;

(iv) if x ∈ Sα,s is enumerated in a BLUE set V̂α,s+1 such that x is not

generated by the elements in V̂α,s, it is via one of the following
three steps:
(a) Step 1 applies to x and α (êα > êβ);
(b) Step 3 applies to x and some δ ⊃ α;
(c) Step 5 applies to x and some δ ⊇ α (êα > êβ).

Proof. Clear from the construction. �

Lemma 15.3 (True Path Lemma). f = lim infs fs.

Proof. This is immediate from the definitions of Cα and f in §13, and
fs in Step 6A. �

Lemma 15.4. For all α ∈ T ,

(i) f <L α⇒ Rα,∞ = ∅;
(ii) α <L f ⇒ Yα =∗ ∅;
(iii) α ⊂ f ⇒ Y<α =∗ ∅.
Proof. Given x, choose s such that x C ms and fs <L α. Step 6C
will initialize all nodes in Rα the next time Step 6 acts, emptying the
region. Now, x is γ-ineligible for all t ≥ s and all γ ⊇ α, so x cannot be
in any such Sγ,t. Steps 1 and 2 will not act on x and α, by construction
conditions 1.2 and 2.3, so x 6∈ Rα,t, giving (i).

For (ii), assume α <L f . Since by definition |Cα| <∞, we will only
see α ⊂ fs a finite number of times. Step 6B will act finitely-often on α
and therefore there will be only a finite number of entries 〈α, ν〉 on L.
Since Step 1 marks a list entry each time it acts, only finitely-many x
can enter Sα under Step 1; also, L can be α-marked only finitely many
times, so limsm(α, s) < ∞. Step 2, by condition 2.4, will move only
finitely-many x into Rα, and by Lemma 15.2, those are the only ways
for x to enter Rα. Therefore Yα =∗ ∅.

Part (iii) is immediate from (ii) since <L is a well-order. �

Lemma 15.5. For every α ∈ T , if α 6= λ and β = α−, then
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(i) Yα \ Yβ = ∅ and Yα ⊆ Yβ;
(ii) (∀x)(∃≤1s)[x ∈ Rα,s+1 −Rα,s];

(iii) Uα \ Yα = V̂α \ Yα = ∅;
(iv) α ⊂ f ⇒ (∃vα)(∀x)(∀s ≥ vα)[x ∈ Rα,s → (∀t ≥ s)[x ∈ Rα,t]].

Proof. To see (i), note the only way for x to enter Yα is by Step 1 or 2
moving it there, both of which require x ∈ Rβ ⊆ Yβ.

For (ii), suppose x ∈ Rα,s+1 − Rα,s and x ∈ Rα,t − Rα,t+1 for some
t > s (i.e., it leaves again). Then by 6D, we know x C ms. By Lemma
15.2 (ii), at stage t+ 1 either

(1) Step 6C applies to α and x
(2) Step 1 applies to δ and x for some δ <L α, δ = α(x, t+ 1)

In case (1), we know fs+1 <L α, so x is γ-ineligible for all stages
v ≥ t+ 1 and γ ⊇ α, so x cannot re-enter Rα. In case (2), by Lemma
15.2 (ii), construction condition 1.5, and induction on v ≥ t, there
are two possibilities. The first is that for all v ≥ t, α(x, v) <L α so
x 6∈ Rα,v, which happens if the only steps which apply to x are 1 and 2.
The second possibility is that at some stage v, Step 6C applies to x and
some η <L α (η = α(x, v − 1)). In that event, we know fv <L η <L α,
so as in case (1) x 6∈ Rα,w for all w ≥ v.

Enumeration of x into Uα or V̂α can take place in Step 1, 3, 4, or 5.
Step 1 also puts x into Yα, Steps 3 and 5 require x ∈ Sα, and Step 4
requires x ∈ Rα, so (iii) holds.

For (iv), assume α ⊂ f and choose vα such that ∀s ≥ vα, fs ≮L α,
and such that no β <L α acts at stage s (which we can assure by Lemma
15.4 (iii)), so Y<α,s = Y<α. As in (ii), the only ways for x to leave Rα

are by Step 1 or 6C. Step 1 would pull x to Sγ for some γ <L α, but by
assumption γ is no longer acting. Step 6C would have to pull x from
Rα to the left, onto the true path, but again by assumption, the true
path never again appears to be to the left of α. Thus x must remain
in Rα,s for all s ≥ vα. �

Lemma 15.6. For all x,

(i) α(x) := lims α(x, s) exists;

(ii) x is enumerated into at most finitely-many c.e. ideals Uγ, V̂γ such
that for such an ideal X, x ∈ Xs+1 but x 6∈ 〈Xs〉 (that is, x is
independent from Xs).

Proof. For (i), if x ∈ Sα, we may assume x B m|α| because both Step 1
and Step 2 require that, and they are the only ways for x to enter Sα

originally. Fix x and suppose it is mi in the enumeration of M . Let
γ = f � i, and let vγ be defined as in Lemma 15.5 (iv). Choose s > vγ
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such that γ ⊂ fs. Let δ0 = α(x, s). Either δ0 <L γ or δ0 ⊆ γ (our
choice of s prohibits γ <L δ0, and |α(x, s)| < i = |γ| prevents γ ⊂ δ0).
By choice of s, x can only be moved by Step 1 or 2, not by 6C. By
induction on t ≥ s, if δ1 = α(x, t) and δ2 = α(x, t + 1) are nonequal,
then either δ2 <L δ1 or δ2 ⊃ δ1. However, there is no infinite sequence
{δ0, . . .} allowed for x such that ∀k(δk+1 <L δk ∨ δk+1 ⊃ δk), because
x can go no lower on the tree than level i, and <L is a well-order.

To see (ii), note that by Lemma 15.2, the only ways for independent

x to be enumerated into Uγ or V̂γ are via Steps 1, 3, 4, and 5. Step 1
requires x be moved on the tree, and by part (i) that can only happen
finitely-many times. Steps 3, 4, and 5 require that x be in a specific
pocket or region, and again by part (i), x only changes pockets a finite
number of times. With x at a particular location α, each of those three

steps can only enumerate x into ideals Uγ, V̂γ for γ ⊆ α, of which there
are finitely-many. Therefore x is only enumerated into X such that
x ∈ Xs+1 but x 6∈ 〈Xs〉 a finite number of times. �

Lemma 15.7. (i) Step 6 applies infinitely often;
(ii) If the hypotheses of some Step 1-5 (1̂ -5̂ ) remain satisfied, then

that step eventually applies.

Proof. If Step 6 applies at stage s, then Yλ remains the same from stage
s until the next time Step 6 applies; in particular, it is finite. Steps 1-5

may move balls on the tree or enumerate elements into ideals Uα or V̂α,
where the element enumerated is not generated by the elements already
in the ideal, but by Lemma 15.6 this happens only finitely many times.
Therefore, Step 11 applies again at some stage t > s and (i) holds.

By the design of the construction, Step 6 cannot occur if the hy-
potheses for some Step 1-5 (1̂-5̂) are satisfied, so by (i) a step whose
hypotheses remain satisfied must eventually apply, and (ii) holds. �

Lemma 15.8. If α ⊂ f , α 6= λ, and β = α−, then

(i) (∀γ <L f)[m(γ) := limsm(γ, s) <∞];
(ii) m(α) := limsm(α, s) = ∞;
(iii) Eα ⊇Mα = F+

β ;

(iv) Êα ⊇ M̂α = F̂+
β ;

Proof. If γ <L f , then γ ⊆ fs for only finitely-many s. Thus only
finitely-many γ-entries are ever added to L, so L is necessarily γ-marked
only finitely often, giving (i).

To see (ii), fix α ⊂ f , α 6= λ, and let β = α−. By definition of f ,

α ⊂ f implies Mα = F+
β and M̂α = F̂+

β . Suppose m(α) < ∞; say
m(α, s) = n for all s ≥ s0.
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Claim: Every α-entry 〈α, ν1〉 on L (〈α, ν̂1〉 on L̂) is eventually marked.
(Proved below.)

Using the claim, find s > s0 such that α ⊂ fs+1 and every α-entry on

Ls and L̂s is marked. But then by Step 6B, m(α, s+1) > m(α, s) = n,
which contradicts the choice of s0.

Proof of Claim: Suppose 〈α, ν1〉 ∈ L is never marked. By Step 6B,
then, there are only finitely-many entries on L. Choose s1 ≥ s0

such that (1) every α-entry on L and every entry on L preceding
〈α, ν1〉 ∈ L which will ever be marked has been marked by stage s1;
(2) Y<α,s1 = Y<α; and (3) for all x E mn, x ∈ Yα,s1 ⇔ x ∈ Yα. Such a
state exists by (1) assumption, (2) Lemma 15.4 (iii), and (3) Lemma
15.6 (i). Then Yα = Yα,s1 , because no x B mn can enter Rα under Step
2, and no x can later enter Rα under Step 1 because it must mark an
α-entry on L. We know ν1 ∈ Mα because 〈α, ν1〉 ∈ L, and Mα = F+

β

since α ⊂ f . Then, by the definition of F+
β ,

(∃npx)(∃s > s1)[x ∈ Yβ,s & ν+(α, x, s) = ν1]

Almost every such x also satisfies the hypotheses of Step 1, so some
such element is moved to Sα under Step 1 at some stage s + 1 > s,
which marks an entry 〈α, ν1〉, contradicting the assumption.

The dual proof establishes the claim for L̂. a
By (ii), since α ⊂ f , L and L̂ are α-marked an infinite number of

times. Thus for every ν1 ∈ Mα, an infinite number of entries 〈α, ν1〉
are added to L. Each entry is later marked by Step 1 when at some
stage s+ 1, some x is moved into Sα, where x is not generated by the
elements of Yα,s. Hence, ν1 ∈ Eα and (iii) holds. Part (iv) holds by the

same proof as (iii), with Step 1̂. �

Lemma 15.9. α ⊂ f ⇒ Rα,∞ =♦ Yα =♦ Yλ = M .

Proof. By Lemma 15.7 (i), Step 6 applies infinitely-many times, so
it must eventually put every x ∈ M into Yλ. By induction, assume
Rβ,∞ =♦ Yβ =♦ M for β = α−. By Lemma 15.4, Y<α =∗ ∅, and
almost every x ∈ Rβ not yet in Rα must eventually lie in Sβ. By
Lemma 15.8, m(α) = ∞ and m(γ) < ∞ for γ <L α with γ− = β.
Therefore almost every x ∈ Rβ not yet in Rα must eventually satisfy
the conditions of Step 2 of the construction and be moved to Sα. By
Lemma 15.5 (iv), cofinitely many such x will remain in Rα forever, so
Rα,∞ =♦ Yα =♦ M . �

Lemma 15.10. α ⊂ f ⇒ α is M-consistent.
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Proof. Let α ⊂ f such that β = α− and α is not M-consistent. That
is, eα > eβ, and for some ν0 ∈ Mα, there is ν1 >B ν0 such that
ν1 � β ∈ Mβ but ν1 6∈ Mα. By the definition of T , α is a terminal
node, so Rα = Sα. Since α ⊂ f , Lemma 15.9 says Sα,∞ =♦ M and
Lemma 15.5 (v) gives a stage vα such that no x ∈ Sα,s (s > vα) ever
leaves Sα. By Lemma 15.8, Eα ⊇Mα, so

(15.1) (∃npx)(∃s)[x ∈ Sα,s+1 − Sα,s & ν(α, x, s+ 1) = ν0].

Choose any such x and s > vα. Step 1 cannot move x, as it would
cause x to leave Rα, and neither can Step 2, as there is no γ with
γ− = α. Therefore Step 3 has the first chance to act on any such x.
Almost every x satisfying (15.1) meets the conditions of Step 3, so Step
3 must apply to some x ∈ Sα,s+1−Sα,s, t > s, such that ν(α, x, t) = ν0.
The action of Step 3 will cause ν(α, x, t+ 1) = ν1, with the result that
α is provably incorrect for all stages v ≥ t+ 1, so α 6⊂ f . �

Lemma 15.11. If α ⊂ f , then

(i) M̂α = {ν̂ : ν ∈M};
(ii) Mα = Fα = Eα;

(iii) M̂α = F̂α = Êα.

Proof. Part (i) is true by definition of M̂. For (ii) and (iii), fix α ⊂ f
and let β = α−. Assume by induction that the lemma holds for β. By
definition, we know Eα ⊆ Fα, and by Lemma 15.8, we know Mα ⊆ Eα,
and likewise on the hatted side. Therefore it suffices to show that
Fα ⊆Mα and F̂α ⊆ M̂α.

Case 1. eα = eβ and êα = êβ.
In this case Mα = Mβ, and since Yα ⊆ Yβ, we know Fα ⊆ Fβ. By

induction, Mβ = Fβ, so Fα ⊆ Fβ = Mβ = Mα.

Before Cases 2 and 3, we need a technical sublemma.
Technical Sublemma: If eα > eβ, ν2 ∈ 〈α, σ2, τ2〉 ∈ F+

β , and

ν1 = 〈α, σ1, τ2〉, where σ1 = σ2 − {eα}, then ν1 ∈ F+
β also.

Proof. Suppose ν2 ∈ F+
β . Then ν3 = ν2 � β ∈ F+

β also, and Fβ = Eβ

by the inductive hypothesis. Therefore,

(∃npx)(∃s)[x ∈ Yβ,s − Yα,s−1 & ν(β, x, s) = ν3].

But for each such x and s, x 6∈ Zeα,s = {x : x ∈ Ueα,s & x ∈ Yβ,s−1}.
Therefore ν+(α, x, s) = ν1, and so a nonprincipal collection of x have
ν+ state ν1 and ν1 ∈ F+

β . The dual proof shows the sublemma holds

for F+
β . a

Case 2. eα > eβ.
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Part (ii) may be proved directly. Suppose ν1 ∈ Fα, and let
ν1 = 〈α, σ1, τ1〉. Then

(15.2) (∃npx)(∃s)[x ∈ Yα,s & ν(α, x, s) = ν1]

by definition of Fα. Note that Yα,s ⊆ Yβ,s and ν(α, x, s) ≤R ν+(α, x, s)
because Uα,s ⊆ Zeα,s. Suppose

(15.3) (∃npx)(∃s)[x ∈ Yα,s & ν+(α, x, s) = ν1].

Then by the definition of F+
β , ν1 ∈ F+

β since Yα ⊆ Yβ and α ⊂ f gives

F+
β = Mα.

If (15.3) fails, then for almost every x in (15.2), ν+(α, x, s) = ν2 >R ν1,
so ν2 = 〈α, σ2, τ1〉 where eα 6∈ σ1 and σ2 = σ1 ∪ {eα}. Again, by defini-
tion ν2 ∈ F+

β , so by the sublemma, ν1 ∈ F+
β = Mα.

Part (iii) is proved using the following three claims.

Claim 1. Êα ⊆ M̂α.
Claim 2. If x̂ ∈ Ŷα,s, ν1 = ν(α, x̂, s) ∈ M̂α, s > vα (where vα is
defined as in Lemma 15.5 (iv)), and RED causes enumeration of x̂ so

that ν̂2 = ν(α, x̂, s+ 1), then ν̂2 ∈ M̂α.

Claim 3. If x̂ ∈ Ŷα,s, ν1 = ν(α, x̂, s) ∈ M̂α, s > vα (where vα is
defined as in Lemma 15.5 (iv)), and BLUE causes enumeration of x̂ so

that ν̂2 = ν(α, x̂, s+ 1), then ν̂2 ∈ M̂α.
Claim 1 says that the states well-visited by elements when they first

enter Rα are in Mα. Claims 2 and 3 together say that after stage vα,
every state attained by an element after it is already in Rα is also in
Mα, so in particular, the well-visited states are in Mα. These three

suffice to show F̂α ⊆ M̂α.

Proof of Claim 1. Suppose ν̂1 ∈ Êα. Then

(∃npx̂)(∃s)[x̂ ∈ Ŝα,s − Ŷα,s−1 & ν(α, x̂, s) = ν̂1]

For every such x̂ and s, x̂ must have entered Ŝα,s under Step 1̂ or Step

2̂. If it was via Step 1̂, we must have marked an entry 〈α, ν̂1〉 on L̂,

so ν̂1 ∈ M̂α by the definition of L̂. If Step 2̂ acted we know x̂ 6∈ Ûα,s

because Lemma 15.5 (iv) gives Ûα \ Ŷα = ∅, so x̂ 6∈ Ŷα,s−1 ⇒ x̂ 6∈ Ûα,s−1

and Step 2̂ does not enumerate. Thus by (11.1), eα 6∈ σ1, where
ν1 = 〈α, σ1, τ1〉. Let ν3 = ν1 � β. By the inductive hypothesis,

ν̂3 ∈ F̂β = M̂β, so ν3 ∈Mβ = Fβ. The set F+
β must contain a state ex-

tending ν3, so either ν1 ∈ F+
β or ν2 ∈ F+

β , where ν2 = 〈α, σ1∪{eα}, τ1〉.
If ν2 ∈ F+

β , then ν1 ∈ F+
β by the sublemma. If not, ν1 ∈ F+

β = Mα

anyway, so ν̂1 ∈ M̂α. a
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Proof of Claim 2. Suppose RED causes enumeration of x̂ such that

ν̂2 = ν(α, x̂, s + 1), where x̂ ∈ Ŷα,s, ν1 = ν(α, x̂, s) ∈ M̂α, and s > vα

(where vα is defined as in Lemma 15.5 (iv)). Then ν̂1 <R ν̂2, so

ν1 <B ν2. Since ν̂1 ∈ M̂α, ν1 ∈ Mα. Since α ⊂ f , so α is M-

consistent, ν2 ∈Mα, and thus ν̂2 ∈ M̂α. a
Proof of Claim 3. Suppose BLUE causes enumeration of x̂ such that

ν̂2 = ν(α, x̂, s + 1), where x̂ ∈ Ŷα,s, ν1 = ν(α, x̂, s) ∈ M̂α, and
s > vα (where vα is defined as in Lemma 15.5 (iv)). Since s > vα,

x̂ ∈ R̂α,s ∩ R̂α,s+1. Since BLUE is the player acting, the enumeration

must take place via Step 1̂, 3̂, or 5̂ applying to x̂ and some γ ⊇ α.
If Step 1̂ applies, it will give x̂ some γ-state ν̂3 = ν̂(γ, x̂, s + 1). By

construction ν̂3 ∈ M̂γ, so ν̂3 � α = ν̂2 ∈ M̂α. The same holds in Step

5̂, where for case 1, x̂ ∈ Ŷγ,s, and for case 2, x̂ ∈ Ŷδ,s for some δ− = γ.

If the BLUE enumeration takes place in Step 3̂, γ is M-inconsistent,
so it must be that γ ) α since α ⊂ f . Let ν̂3 = ν(γ−, x̂, s + 1). By

construction condition 3̂.4, ν̂3 ∈ M̂γ− , so ν̂2 = ν̂3 � α ∈ M̂α by the
definition of T . a
Case 3. êα > êβ.

Holds by the dual proof to Case 2. �

Lemma 15.12. α ⊂ f ⇒ α is R-consistent.

Proof. For a contradiction, assume α ⊂ f is not R-consistent, so
(∃ν1 ∈ Rα)(∀ν2 ∈ Mα)[ν1 6<R ν2]. Choose such a ν1. As in Lemma
15.10, Sα = Rα, Sα =♦ M , and there is vα such that for s > vα,
no x ∈ Sα,s later leaves Sα. Lemma 15.11 gives that Mα = Eα. By
definition, Rα ⊆Mα, so ν1 ∈ Rα ⇒ ν1 ∈ Eα, giving

(15.4) (∃npx)(∃s > vα)[x ∈ Sα,s+1 − Yα,s & ν(α, x, s) = ν1].

For each such x and s, as in Lemma 15.10, neither Step 1 nor Step
2 can apply at any stage t > s + 1. Step 3 cannot apply to x ∈ Sα,t

because, by Lemma 15.10, α is M-consistent. Step 5 cannot apply to
x while ν(α, x, t) = ν1, because it requires ν1 ∈ Bα, which is disjoint
from Rα. However, if ν(α, x, t) = ν1 for all t ≥ s, then x witnesses that
F (α−, ν1) fails, and ν1 ∈ Rα would force α 6⊂ f . Therefore at some
stage t > s, the state of x must be changed so that ν(α, x, t) = ν1 but
ν(α, x, t + 1) = ν2 6= ν1. The only step remaining which can do such
a thing is Step 4, which will choose ν2 such that ν1 <R ν2. This must
happen for all x satisfying (15.4), so choose ν2 such that a nonprincipal
collection of x are given state ν2. Then ν2 ∈ Fα, so by Lemma 15.11,
ν2 ∈Mα, and α is R-consistent. �
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Lemma 15.13. If α ⊂ f and ν1 ∈ Bα, then {x : x ∈ Yα & ν(α, x) = ν1}
is finite.

Proof. Fix α ⊂ f and ν1 ∈ Bα. Let vα be as in Lemma 15.5 (v), and let
x ∈ Rα,s for some s > vα. Cofinitely many of the elements x ∈ Yα will
satisfy that hypothesis. Assume that for all t ≥ s, γ = α(x, t) (some
γ ⊇ α) and ν1 = ν(α, x, t). Since α ⊂ f , by the (inductive) definition
of Bα, ν1 ∈ Bα ⇒ ν ′1 ∈ Bγ for all ν ′1 ∈ Mγ such that ν ′1 � α = ν1. Note
that x’s γ-state must be some such ν ′1.
Case 1. γ is R-consistent and M-consistent.

Then the hypotheses of Step 5 case 1 remain satisfied, so at some
stage t + 1 > s, it applies with ν ′1 = ν(γ, x, t), ν ′2 = ν(γ, x, t + 1),
ν ′1 <B ν ′2, and ν ′2 ∈ Mγ − Bγ. Hence ν2 = ν ′2 � α ∈ Mα − Bα and
ν(α, x, t+ 1) = ν2 >B ν1.
Case 2. Otherwise.

Then likewise, Step 5 case 2 applies to x and γ−. �

Lemma 15.14. The correspondence Uα ↔ Ûα and V̂α ↔ Vα, α ⊂ f ,
defines an isomorphism from G♦ to E∗.

Proof. Choose α ⊂ f . By Lemmas 15.10 and 15.12 α is consistent.
Therefore every α ⊂ f has an extension in f and f is infinite. By
Lemma 15.9 and its dual, Yα =♦ M and Ŷα =∗ ω. Lemma 15.11 gives

Fα = Mα = M̂α = F̂α, so the well-visited states on the M and ω̂
sides coincide. Since for α ⊂ f , Yλ − Yα =♦ ∅ (Ŷλ − Ŷα =∗ ∅), Lemma

15.13 and its dual give Nα = N̂α (by the remarks preceding (12.12)),
so the non-well-resided states also coincide. Therefore we have met the
automorphism requirement stated and discussed in §10. �
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