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Abstract. The notion of immune sets is extended to closed sets and Π0
1 classes in

particular. We construct aΠ0
1 class with no computable member which is not immune. We

show that for any computably inseparable sets A and B, the class S(A,B) of separating
sets for A and B is immune. We show that every perfect thin Π0

1 class is immune. We
define the stronger notion of prompt immunity and construct an example of a Π0

1 class
of positive measure which is promptly immune. We show that the immune degrees in the
Medvedev lattice of closed sets forms a filter. We show that for any Π0

1 class P with no
computable element, there is a Π0

1 class Q which is not immune and has no computable
element, and which is Medvedev reducible to P . We show that any random closed set is
immune.
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1 Introduction

The notion of a simple c.e. set and the corresponding complementary notion of an
immune co-c.e. set are fundamental to the study of c.e. sets and degrees. Together
with variations and related notions such as effectively immune, promptly simple,
hyperimmune and so forth, they permeate the classic text of R.I. Soare [21] and
its updated version.

Many of the results on c.e. sets and degrees have found counterparts in the
study of effectively closed sets (Π0

1 classes). See the surveys [10, 11] for examples.
In particular, hyperhyperimmune co-c.e. sets correspond to thin Π0

1 classes [7–9]
and hyperimmune co-c.e. sets correspond to several different notions including
smallness studied by Binns [5, 6].

In this paper we consider the notion of immune sets as applied to Π0
1 classes

and closed sets in general. We work in 2N with the topology generated by basic
clopen sets called intervals. For any σ ∈ {0, 1}∗ the interval I(σ) is {X : σ ⊂ X},
where here ⊂ means initial segment. Notation is standard; we note that σ � n
is the length-n initial segment of σ, and if T ⊆ {0, 1}∗ is a tree (i.e., it is closed
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under initial segment), [T ] ⊆ 2N denotes the set of infinite paths through T . For
any set P ⊆ 2N, we may define the tree TP = {σ ∈ {0, 1}∗ : I(σ) ∩ P 6= ∅}; the
closed sets P ⊆ 2N are exactly those for which P = [TP ]. A Π0

1 class is a closed
set for which some computable tree T ⊇ TP has [T ] = P ; in this case TP is a Π0

1

set. For any tree T , let Ext(T ) be the set of nodes of T which have an infinite
extension in [T ], thus if P = [T ], then Ext(T ) = TP .

An infinite set C ⊆ ω is said to be immune if it does not include any infinite
c.e. subset, or equivalently if it has no infinite computable subset. A c. e. set
which is the complement of an immune set is said to be simple. We say that a
closed set P ⊆ 2N is immune if TP is immune.

It is easy to see that an immune closed set has no computable member. We
will construct in section 2 a Π0

1 class which is not immune and still has no
computable member. We will show that for any computably inseparable sets A
and B, the class S(A,B) of separating sets for A and B is immune. We will
show that every perfect thin Π0

1 class is immune. We define the stronger notion
of prompt immunity and construct an example of a Π0

1 class of positive measure
which is promptly immune.

In section 3, we consider connections between immunity and Binns’ notion of
smallness [5] and also connections with the Medvedev degrees of difficulty [16,
19]. We show that for closed sets P and Q, the meet P ⊕ Q is immune if and
only if both P and Q are immune, whereas the join P ⊗Q is immune if and only
if at least one of P and Q are immune. We show that for any Π0

1 class P with
no computable element, there is a non-immune Π0

1 class Q with no computable
element which is Medvedev reducible to P .

In section 4, we show that any random closed set (in the sense of [2]) is
immune. We also show that any random closed set is not small.

2 Immunity for Π0
1 classes

We begin with some basic results. The following is a useful additional character-
ization of immunity.

Lemma 1. P is not immune if and only if there is a computable sequence {σn :
n ∈ ω} such that σn ∈ TP ∩ {0, 1}n for each n.

Proof. The reverse implication is immediate. Now suppose that C is an infinite
computable subset of TP and enumerate C as {τ0, τ1, . . . }. Observe that C must
have arbitrarily long elements and define σn to be τi � n, where i is the least such
that |τi| ≥ n.

We often refer to a Π0
1 class with no computable members as a special Π0

1

class. The following two results shows that the immune classes are a proper subset
of the special classes.
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Proposition 1. If P is immune, then P is special.

Proof. If P has a computable member X, then {X � n : n ∈ N} is an infinite
computable subset of TP .

Theorem 1. There exists a special Π0
1 class P that is not immune.

Proof. We will build a sequence of nested computable trees Ts such that TP =
∩sTs and a prefix-free set A such that As = {σ0, . . . , σs} ⊆ Ext(Ts) and |σs| ≥ s.
We have the following requirements:

Ne : ϕe total ⇒ We /∈ P.

Each Ne has an associated ms(e), the minimum length of convergence of ϕe
required before we act for Ne. For all e, m0(e) = 2e+ 1.

To meet a single requirement N0 we act as follows. We wait until ϕ0(0) ↓, and
if that happens at stage s we let ms(0) = 1 + max{|σi| : i < s} and choose all σt,
t ≥ s, to be incompatible with ϕ0(0). Then if at stage s′ > s we see ϕ0 � ms(0) ↓,
we let Ts′+1 = Ts′ − {ϕ0 � ms(0)aτ : τ ∈ {0, 1}∗}. The same module holds for all
other requirements; we enumerate a set R of indices of requirements that must
be avoided by A. Each ms(e) changes its value at most once, and the second
value it takes on is sufficiently large that the standard measure argument shows
P ∩ [σi] 6= ∅ for each i.

Stage 0: ∀e m0(e) = 2e+ 1; A0 = R0 = ∅; T0 = {0, 1}∗.
Stage s > 0: For each e ≤ s such that ϕe � (2e + 1) ↓ newly at s, set

ms(e) = 2e + 1 + max{|σi| : i < s}. Enumerate all such e into Rs. For the rest,
let ms(e) = ms−1(e).

Next, if any e ≤ s is such that ϕe � ms(e) ↓= τe ∈ Ts−1, let Ts = Ts−1 − {τeρ :
ρ ∈ {0, 1}∗, e as above}. Otherwise let Ts = Ts−1.

Finally, let Q be the part of Ts uncovered by A and R. That is,

Q = Ts − {τaρ : τ ∈ As−1 ∪ {ϕe � (2e+ 1) : e ∈ R}, ρ ∈ {0, 1}∗}.

Note that we would get the same Q if we replaced Ts by {0, 1}∗. Choose the
leftmost σ ∈ Q of length at least s+ 2 and let it be σs ∈ As.

To verify the construction works, first note every σi has an extension by a
straightforward measure argument: if ϕe � (2e + 1) ↓ at or before stage i, σi
will be chosen to avoid it; if ϕe � (2e + 1) ↓ after stage i it will be allowed to
remove at most 2−2e−1−|σi| from the tree. The sum of the measure so eliminated
is bounded by 2

3
µ([σi]). Second, another measure argument shows there is always

enough room in Q to choose a new string in A without covering all of Ts. The
measure of Q at stage s is at least

x = 1−
s∑
e=0

2−2e−1 −
s−1∑
i=1

2−i−2,
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which we need to be greater than (at most) 2−s−2. It is easily checked that x −
2−s−2 is

1

12
+

1

3 · 22s+1
+

1

2s+2
,

which is clearly positive.
Since it is clear that the requirements are met, P is a Π0

1 class, and A ⊂ TP
is computable, the proof is complete.

The next results show many Π0
1 classes of interest are immune. Recall S(A,B)

denotes the class of separating sets for A and B (all C such that A ⊆ C and
B ∩ C = ∅); it is a closed set, and when A and B are c.e. it is a Π0

1 class.

Proposition 2. If A and B are computably inseparable, then S(A,B) is immune.

Proof. Suppose that W ⊂ TS(A,B) is an infinite c.e. set, enumerated without
repetition as σ0, σ1, . . . . Note that for any σ ∈ W and any n < |σ|, n ∈ A ⇒
σ(n) = 1 and n ∈ B ⇒ σ(n) = 0. Since W must have elements of arbitrary
length, we may computably define i(n) to be the least i such that |σi| > n and
let X(n) = σi(n)(n) to compute a separating set for A and B.

The notion of a thin Π0
1 class corresponds to that of a hyperhyperimmune set

and has been studied extensively by many researchers in articles including [7–9].
Since any hyperhyperimmune set is also immune, the following result is ex-

pected.

Proposition 3. If P is a perfect thin Π0
1 class, then P is immune.

Proof. Let P be perfect thin (and therefore having no computable member) and
suppose that some computable set W ⊆ TP . Then TP −W is a Π0

1 set, so that
[TP −W ] is a Π0

1 subclass of P and hence there exists a clopen set U such that
[TP −W ] = P ∩ U . It follows that TP∩U ⊆ TP −W . We claim that without loss
of generality TP −W = TP∩U . That is, let Q = P − U and consider TQ −W .
TQ−W ⊆ TP −W , so that [TQ−W ] ⊆ P ∩U . On the other hand, TQ−W ⊆ TQ,
so [TQ −W ] ⊆ Q = P − U . Thus [TQ −W ] is empty and hence TQ −W is finite.
Thus we may assume without loss of generality that TQ ⊆ W and therefore
TP −W ⊂ TP − TQ = TP∩U . It follows that TP −W = TP∩U . This means that in
fact W = TP−U which means that TP−U is computable. But P has no computable
members, so that P − U = ∅ and therefore W is finite.

For any c.e. set A and n ∈ ω, let An denote as usual the elements which have
been enumerated into A by stage n; A is said to be promptly simple if there is a
computable function π such that for any infinite c.e. set We ⊆ ω, there exist n, s
such that n ∈ We,s+1 −We,s and n ∈ Aπ(s).
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For P a Π0
1 class, let T be a computable tree giving P . For each s, let Ts be

the collection of nodes of T which have length-s extensions in T . Let {σn}n∈N =
{〈〉, 0, 1, 00, 01, 10 . . .} denote the length-lexicographical ordering of the elements
of {0, 1}∗. We say that P is promptly immune if there is a computable function
π such that for any infinite c.e. set W , there exist n, s such that

n ∈ Ws+1 −Ws & σn /∈ Tπ(s).

There exist Π0
1 classes with positive measure which have no computable ele-

ments. The next result is an improvement on this.

Proposition 4. There exists a Π0
1 class P of positive measure which is promptly

immune.

Proof. We define the Π0
1 class P = [T ] in stages Ts and let T =

⋂
s Ts. P will be

promptly immune via the function π(s) = s+ 1. For each e, we will wait for some
n such that |σn| > 2e to come into We at stage s+1 and then remove σn from Ts+1

by removing σn and all extensions (if any) from T . Initially T0 = {0, 1}∗. After
stage s, we will have satisfied some of the requirements. At stage s + 1, we look
for the least e ≤ s which has not yet been satisfied and such that some suitable
n ∈ We,s+1−We,s. We meet this requirement by setting Ts+1 = Ts−{τ : σn ⊆ τ}.
Not that this action removes from [T ] a set of measure ≤ 2−2e−1, so that the total
measure removed is

≤
∑
e

2−2e−1 ≤ 2

3
.

It follows that Ts 6= ∅ for any s and therefore P = [T ] is not empty, and in fact
has measure at least 1

3
.

3 Immunity and smallness

Π0
1 classes are often viewed as collections of solutions to some mathematical

problem. Muchnik and Medvedev reducibility, defined for closed subsets of 2N and
indeed NN in general, order classes based on this viewpoint. The classA is Muchnik
(a.k.a. weakly) reducible to the classB (A ≤w B) if for everyX ∈ B there is Y ∈ A
such that Y ≤T X [17]. The class A is Medvedev (a.k.a. strongly) reducible to
B if there is a single Turing reduction procedure which, when given any element
of B as an oracle, computes an element of A; it is exactly the uniformization
of Muchnik reduction [16]. These reductions have been studied extensively by
Binns (e.g., [4]) and Simpson (e.g., [20]), among others, and have connections to
randomness [18].

For X, Y ∈ 2N, the join X ⊕ Y = Z, where Z(2n) = X(n) and Z(2n +
1) = Y (n). Similarly for finite sequences σ and τ of equal length, we may define
σ ⊕ τ = ρ, where ρ(2n) = σ(n) and ρ(2n+ 1) = τ(n).
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The quotient structure of the Π0
1 classes under either Muchnik or Medvedev

equivalence is a lattice, and both have the same join and meet operators. The
join of P and Q is given by

P ⊗Q = {X ⊕ Y : X ∈ P, Y ∈ Q}.

If P = [S] and Q = [T ], then P ⊗Q = S ⊗ T , where

S ⊗ T = {σ ⊕ τ, (σ ⊕ τ)i : σ ∈ S, τ ∈ T, i ∈ {0, 1}}.

The meet is given by

P ⊕Q = {0_X : X ∈ P} ∪ {1_Y : Y ∈ Q}.

Theorem 2. For any closed sets P and Q, P ⊕Q is immune if and only if both
P and Q are immune.

Proof. Suppose first that P is not immune and let C ⊆ TP be an infinite com-
putable set. Then {0_σ : σ ∈ C} is a computable subset of TP⊕Q. A similar
argument holds if Q is not immune.

Next suppose that P ⊕ Q is not immune and let C ⊆ TP⊕Q be an infinite
computable set. Let Ci = {σ : i_σ ∈ C} for i = 0, 1. Then C0 ⊆ TP , C1 ⊆ TQ
and both sets are computable. Clearly either C0 is infinite or C1 is infinite, which
implies that either P is not immune or Q is not immune.

Theorem 3. For any closed sets P and Q, P ⊗ Q is immune if and only if at
least one of P and Q are immune.

Proof. Suppose first that P ⊗ Q is not immune and by Lemma 1 let C =
{ρ0, ρ1, . . . } be a computable subset of TP⊗Q with |ρn| = n for each n. Then
for each n, ρ2n = σn ⊕ τn with σn ∈ TP and τn ∈ TQ, showing both P and Q are
not immune.

Next suppose that both P and Q are not immune and let C0 = {σ0, σ1, . . . } ⊂
TP and C1 = {τ0, τ1, . . . } ⊂ TQ with |σn| = |τn| = n for each n. Then {σn ⊕ τn :
n ∈ N} is an infinite computable subset of TP⊗Q, so P ⊗Q is not immune.

We may compare immunity with other “smallness” notions for Π0
1 classes.

Binns [5] defined a small closed set P to be one such that there is no computable
function g such that, for all n, card({0, 1}g(n) ∩ TP ) > n. He showed that P ⊕Q
and P⊗Q are each small if and only if both P and Q are small, which immediately
distinguishes immunity and smallness.

Another distinction occurs in the maximum degree of each lattice. Recall the
family S(A,B) of separating sets of c.e. sets A, B is a Π0

1 class. An important
example is the class DNC2, the set of diagonally noncomputable functions; here
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A = {e : ϕe(e) = 0} and B = {e : ϕe(e) = 1}. DNC2 has maximum Medvedev
and Muchnik degree, and by Proposition 2 it is immune. However, Binns has
proved that DNC2 is not small. In fact, all Medvedev complete Π0

1 classes are
immune and not small, as they are all computably homeomorphic.

We look next for a containment relationship between smallness and immunity.
Smallness alone will not give immunity because a Π0

1 singleton (i.e., a computable
path) is small. Binns’ original special small class [5] is S(A,B) for computably
inseparable A, B, such that A∪B is hypersimple; by Proposition 2 it is immune.
Our construction above in Theorem 1 of a special nonimmune class produces a
class of positive measure, which is therefore not small. We have the following
question:

Question 4. If P is small and special, is P necessarily immune?

We now turn to questions of density. Let 0M denote the least Medvedev degree,
which consists of all Π0

1 classes that have a computable member. Binns has shown
there is a nonsmall class of every nonzero Medvedev degree. We have the following
bounding result for nonimmune classes.

Theorem 5. For any nonzero Π0
1 class P , there is a Π0

1 class Q with 0M <M

Q ≤M P which is not immune.

Proof. Let R be the Π0
1 class of Theorem 1 which is nonzero and also not immune.

It follows from Theorem 2 that P ⊕ R is not immune, but it is also special and
certainly P ⊕R ≤M P .

Question 6. Does every nonzero Medvedev degree contain an immune Π0
1 class?

Ambos-Spies et al [1] showed that any promptly simple c.e. degree cups to
0′; in fact they had the much stronger result that the promptly simple degrees
are exactly the c.e. degrees that are cuppable by a low c.e. degree. We have the
following more modest Cupping Conjecture.

Conjecture 7. If P is promptly immune, then there exists Q, not Medvedev
complete, such that P ⊗Q is Medvedev complete.

4 Immunity and randomness

Finally we consider the immunity of random closed sets. A closed set P may be
coded as an element of 3N; P is called random if that sequence is Martin-Löf
random (for background on randomness see [12]). The code of P is defined from
TP ; the nodes of TP are considered in order by length and then lexicographically,
and each one is represented in the code by 0, 1, or 2 according to whether the
node has only the left child, only the right child, or both children, respectively.
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Randomness for closed sets is defined and explored in [2, 3], where it is shown
among other results that no Π0

1 class is random, and that no random closed set
contains an f -c.e. path for any computable f bounded by a polynomial. The
following theorem does not follow immediately but is not surprising.

Theorem 8. If P is a random closed set, then P is immune.

Proof. Fix a computable sequence C = (σ1, σ2, . . . ) such that |σn| = n for each
n. For n > 0, let Sn = {Q : (∀i ≤ n) σi ∈ TQ}. Then Sn is a clopen set in the
space of closed sets and the sequence {Sn : n ∈ ω} is uniformly c.e. It is clear that
C ⊆ TP if and only if P ∈ Sn for all n. Now consider the Lebesgue measure λ(Sn).
Certainly λ(S1) = 2/3. Given λn = λ(Sn) and σn+1, let i ≤ n be the largest such
that σi ⊂ σn+1. Then λn+1 = (2

3
)n+1−iλn ≤ 2

3
λn. Hence λ(Sn) ≤ (2

3
)n for each n.

It follows that {S2n : n ∈ ω} is a Martin-Löf test and hence no random closed
set can belong to every Sn. Hence if P is random, then C is not a subset of TP .
Since this holds for every such C, it follows that random closed sets are immune.

Since a random ternary sequence must contain 1
3

2s in the limit, intuitively
the tree it codes must branch too much to be small. This is a straightforward
consequence of the following, which is drawn from Lemma 4.5 in [2].

Lemma 2. Let Q be a random closed set. Then there exist a constant C ∈ N
and k ∈ N such that for all m > k,

C

(
4

3

)m (
1−m−

1
4

)
< card(TQ ∩ {0, 1}m) < C

(
4

3

)m (
1 +m−

1
4

)
.

Corollary 9. If Q is a random closed set, Q is not small.

Proof. For C, k as in Lemma 2, define the function g(n) as

g(n) = max

{
k + 1,min

{
m : n < C

(
4

3

)m (
1−m−

1
4

)}}
.

It is clear that g is computable, and by Lemma 2, for all n the number of branches
at level g(n) will be at least n.
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