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Tutorial on Π0
1 Classes

Rebecca Weber, Dartmouth/Florida

Plan:

• Basic definitions; examples

• Basis and antibasis theorems

• Connections to randomness

• Enumeration and index sets

• Lattice intervals and invariance

• Lattice embeddings and theories
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Definitions

ω: natural numbers, beginning at 0 (k, n,m)

2<ω: set of all finite binary sequences (a.k.a. {0, 1}∗);
complete binary-branching tree (σ, τ, ρ)

2ω: set of all infinite binary sequences; Cantor space (X, Y, Z)

subtree of 2<ω: subset closed under initial segment; dead ends
allowed

Π0
1 class: set of infinite paths through a computable subtree

of 2<ω
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Definitions

Empty string denoted λ (often also written 〈〉)

Length of σ is |σ|

0n, 1n, 0ω, 1ω: string of all 0s or all 1s of length in superscript

Concatenation of σ and τ indicated by στ or σ_τ .

If τ extends σ (∃ρ(σρ = τ)), write σ ⊆ τ . If σ 6⊆ τ and τ 6⊆ σ,
σ ⊥ τ .
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Definitions

X � i is the length-i initial segment of X

If |σ| = n, σ(0) is the first bit of σ and σ(n− 1) the last.

[·] means “infinite strings associated with” for us: If T is a
tree, [T ] is the associated Π0

1 class; if σ is a finite string, [σ] is
the set of all infinite strings that extend σ (interval around σ)

Lattice of all Π0
1 classes: denoted EΠ.
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Working within 2ω

Topology: basic clopen sets are intervals.

Measure: size of interval [σ] is 2−|σ| (coin-toss probability
measure).

Metric: distance between X and Y is measure of least
interval containing both; i.e., 2−|σ| for σ the longest initial
segment common to X and Y .
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Solution sets

Perhaps the most significant use of Π0
1 classes is as

representations of solution sets to problems of finding
examples of something (e.g. separating sets, ideals, zeros of a
function). When the problem is presented as a computably
enumerable sequence of computable requirements we can
often build a Π0

1 class with paths corresponding exactly to
solutions of the problem.

Note these proofs need not be effective – there may be no
solution that is computable. If we collect the solutions into a
Π0

1 class, we may be able to make other complexity-related
statements about them, though.
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Template for building a Π0
1 class

– Start with λ, the empty node.

– Unless otherwise instructed, at stage s + 1 enumerate both
children of every length-s node in the tree.

– Concurrently enumerate a list of properties the infinite
paths must have.

– Cease extending any node when you see all sequences in its
interval will fail some property.

– To survive at all levels, a path must satisfy all properties.

– Why computable? Only put nodes in, never take them out,
and all length-s nodes are in at stage s.
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Example 1: Separating sets (the canonical example)

Have disjoint c.e. A and B. Associate elements of ω with
levels of the tree, starting at level 1; paths are interpreted as
characteristic functions.

Requirement on paths X: if n ∈ A, X(n) = 1. If n ∈ B,
X(n) = 0. Enumeration of A and B gives enumeration of
desired properties.

Pruning method: If n enters A at stage s, cease extending
any living length-s node σ such that σ(n) = 0. Likewise for B

and σ(n) = 1.

Correct Π0
1 class: Since any number entering A or B must

enter at some finite stage, at that stage all paths containing
the wrong level-n value will be killed.
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Example 2: Zeros of a computable function

Have computable f : 2ω → 2ω, presented by enumeration of
pairs of intervals 〈[σn], Jn〉 ({σn} enumeration of all finite
strings in lexicographical order) such that f [[σn]] ⊆ Jn and if
{X} = limi σi, {f(X)} =

⋂
i Ji. Paths of the tree interpreted

as elements of 2ω.

Requirement on paths X: f(X) = 0ω.

Pruning method: If 〈[σs], Js〉 is such that 0ω /∈ Js, cease
extending any living length-s node extending σs.

Correct Π0
1 class: If f(X) 6= 0ω, then f(X) = Y for some Y a

nonzero distance from 0ω. At some finite stage the sequence
of intervals intersecting to {Y } will be small enough to
exclude 0ω.
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Likewise:

• Fixed points of a computable function (prune when the
preimage and image intervals are disjoint)

• Points at which the computable function attains a
maximum [minimum] (when you see 〈I1, J1〉, 〈I2, J2〉 such
that all elements of J1 are strictly less [greater] than all
elements of J2, prune I1)
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Other examples

• Complete consistent extensions of an axiomatizable
first-order theory (i.e., one whose true sentences form a
c.e. set): levels of tree correspond to all sentences in
language; prune when you see inconsistency.

• Prime ideals of a c.e. commutative ring with unity: levels
of tree correspond to all elements of ring; prune when you
see 1s at levels a, b and 0 at level a + b, or 1 at level a and
0 level ab for some b, or 0s at levels a, b and 1 at level ab

(need commutativity for that characterization of
primality).

11



'

&

$

%

Completions of PA

PA, or Peano Arithmetic, is a first-order formalization of
arithmetic consisting of =, +, ·, 0, successor, and induction.

PA is axiomatizable so its completions form a Π0
1 class.

Solovay & Scott proved the degrees of consistent extensions
of PA and completions of PA coincide with each other and
with the degrees a such that every Π0

1 class contains a path
of degree ≤T a (these are the PA degrees, denoted a >> 0).
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DNR2

Let {ϕe}e∈ω be an enumeration of partial computable
functions. X ∈ kω is diagonally non-recursive (DNRk) if
(∀n)[X(n) 6= ϕn(n)].

The DNR2 sets form a Π0
1 class (whenever you see

convergence of a new computation of ϕn(n), prune paths that
agree with it at level n).

The Turing degrees of paths of DNR2 are the same as those
of PA, but DNR2 is a separating class.

Steve will tell more about DNR2 in the context of Medvedev
and Muchnik degrees.
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We should note that in some cases every Π0
1 class represents a

solution set for some instantiation of a given problem, and in
some cases not.

For example:

Not every Π0
1 class is a separating class, clearly: need only

two length-n nodes with different branching properties.
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Representability theorems

Every Π0
1 class represents

• the set of zeros of some computable function (can build
the function out of the tree).

• the set of fixed points of some computable function.

• the set of points at which some computable function
attains its minimum [maximum].

• the set of complete consistent extensions of some
axiomatizable theory.

• the set of prime ideals of some c.e. commutative ring with
unity.
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A few basis theorems (Jockusch and Soare, 1972)

Every nonempty Π0
1 class P ⊆ 2ω contains

(a) a path of low Turing degree;

(b) a path of c.e. Turing degree;

(c) a computable path or two paths with degree infimum zero;

(d) a path of hyperimmune-free degree.

16



'

&

$

%

Consequences of basis theorems

A computable function need not have a computable zero, but
it must have a zero of low degree and one of c.e. degree. If it
has no computable zeros it has two zeros which form a
minimal pair in the Turing degrees.

Likewise a pair of c.e. sets must have a c.e. separating set
(this is clear anyway) and a low separating set.
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One proof: Low basis theorem (forcing with Π0
1 classes)

Given P = [T ] for computable T , define a sequence of
computable subtrees T = T0 ⊇ T1 ⊇ . . . so

⋂
e[Te] is

nonempty and contains only low paths.

By induction, assume Te is defined and infinite. Let
Ue = {σ : Φσ

e,|σ|(e)↑} (standard enumeration of functionals
Φe); Ue is a computable tree. Using 0′, choose Te+1 = Te if
Ue ∩ Te is finite, and Te+1 = Ue ∩ Te otherwise. Hence in Te+1

either all paths X give ΦX
e (e)↑ or all give ΦX

e (e)↓, and all Te

are infinite so
⋂

e[Te] 6= ∅ by compactness. The construction
is computable in 0′, so X ′ ≤T 0′ for all X ∈

⋂
e[Te] ⊆ [T ].
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Antibasis theorems

• A nonempty Π0
1 class need not have a computable

member (Kreisel 1953)

• The Π0
1 class with no computable member may even have

positive measure, though its measure cannot be a
computable real

• The low and c.e. paths need not be the same (Arslanov
1981)

• The minimal pair need not both be ∆0
2 (Kučera 1988)

PA, and hence DNR2, satisfies all but the second of these.
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Consequences of antibasis theorems

We can’t a priori say anything about separating sets, since
not all Π0

1 classes are separating classes (though many
antibasis theorems hold for separating classes as well – as
DNR2 witnesses).

However, we can say there is a computable function with no
computable zeros, even one that has a set of zeros of positive
measure but still no computable one.
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More membership theorems

We have a lot of degree control (Jockusch and Soare, 1972):

• There is a nonempty Π0
1 class such that the only c.e.

degree ≥T any path of the class is 0′.

• For any c.e. degree c there is a Π0
1 class such that the

degrees of its c.e. paths are exactly those ≥T c.

• For any degree a there is a nonempty Π0
1 class with no

members of degree 0 or a.

• There is a nonempty Π0
1 class all of whose members are

Turing incomparable.
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A version of that last one for separating classes (JS ’72):

General: There is a nonempty Π0
1 class all of whose members

are Turing incomparable.

Specific: There are disjoint c.e. sets A and B that are
computably inseparable such that any two separating sets of
A and B either have finite difference or are Turing
incomparable.
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Connections to randomness

We take on faith that the random reals are exactly those that
pass the universal Martin-Löf test. That is, there is a
computable sequence of Σ0

1 classes (subsets of 2ω) such that
the nonrandom reals are exactly those reals in the
intersection of the sequence. Furthermore the nth class in the
sequence has measure bounded by 2−n (Denis will elaborate).

As the complement of a Σ0
1 class is a Π0

1 class, there are Π0
1

classes all of whose elements are random; in fact with
measure arbitrarily close to 1.
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The Π0
1 classes of positive measure are exactly those

containing a random real (observation/Kurtz).

Every Π0
1 class of positive measure has an element of every

1-random degree (Kučera).

Downey and Miller jump inversion (2006):

If P is a Π0
1 class of positive measure, then for every Σ0

2 set
S ≥T 0′, there is a ∆0

2 real A ∈ P such that A′ ≡T S.

Taking P to be one of the Π0
1 classes containing only random

reals, we get a ∆0
2 random real A that jumps to S.
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Enumerations

Before constructing an enumeration of all Π0
1 classes, we show

the complexity of tree representation is flexible:

Proposition. For any P ⊆ 2ω, TFAE:

(a) P = [T ] for some Π0
1 tree T ⊆ 2<ω;

(b) P = [T ] for some computable tree T ⊆ 2<ω;

(c) P = [T ] for some primitive recursive tree T ⊆ 2<ω.
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Another proof:

(c) ⇒ (b) ⇒ (a) is clear.

(a) ⇒ (b): From Π0
1 T given by computable relation R such

that σ ∈ T ⇔ (∀n)R(n, σ), build computable tree S ⊇ T :

σ ∈ S ⇐⇒ (∀m,n ≤ |σ|)R(m,σ � n).

(b) ⇒ (c): From computable T given by total computable
{0, 1}-valued function ϕ such that σ ∈ T ⇔ ϕ(σ) = 1, build
primitive recursive tree S ⊆ T :

σ ∈ S ⇐⇒ (∀n < |σ|)¬ϕ|σ|(σ � n) = 0.
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Enumerating the Π0
1 classes via primitive recursive trees

For {We}e∈ω an enumeration of all c.e. sets and {σe}e∈ω an
enumeration of 2<ω (lexicographically, say), define the tree Te

by

σ ∈ Te ⇔ (∀n < |σ|)
[
σn ⊆ σ → n /∈ We,|σ|

]
.

Then Pe = [Te] enumerates all Π0
1 classes.
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Note that neither the proposition about equivalence of
representations nor the construction of the enumeration of Π0

1

classes is dependent on using Π0
1 subclasses of 2ω; both will

go through if we use ωω. We will stick to the former but
there are many additional index set results for ωω.

Recall that given an enumeration {ξe}e∈ω (of anything) an
index set I is any subset of ω such that if a ∈ I and ξa = ξb,
then b ∈ I.

A set A ⊆ ω is Hm
n -complete (for H = Π,Σ,∆) if it is Hm

n

and every other Hm
n set B is 1-reducible to A.
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In our setting, the index sets will often be properties of trees,
but sets of indices of Π0

1 classes. That is, many of the sets
will be of the form

I = {e : Pe has a tree representation with property α},

and all indices i of Pe will be in the set if at least one of them
corresponds to a tree Ti with property α.
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Why should we care?

We can transfer these results to statements about index sets
of computable mathematical problems. For instance, the
index set of primitive recursive graphs with a 4-coloring is
Π0

1-complete, but the index set of those with a computable
4-coloring is Σ0

3-complete; this strengthens the result that
there is a computable 4-colorable graph with no computable
4-coloring.
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Let I(P) be the index set of classes with property P.

• I(nonempty) is Π0
1-complete.

• I(no more than c paths) is Π0
2-complete for fixed c ≥ 1.

• I(exactly c paths) is Π0
2-complete for c = 1 and

D0
2-complete for c > 1.

• I(finite) is Σ0
3-complete.

• I(countable) is Π1
1-complete.

Dm
n sets are those expressible as the difference of two Σm

n sets.
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A few more, as we are often interested in the existence of
computable solutions to problems:

• I(no comp. paths) and I(nonempty; no comp. paths) are
Σ0

3-complete.

• I(more than c comp. paths) is Σ0
3-complete.

• I(exactly c comp. paths) is D0
3-complete.

• I(infinitely many comp. paths) is Π0
4-complete.

Again: Dm
n = difference of two Σm

n sets.
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Cenzer and Remmel (CR):

There exist computable functions taking indices for
computably continuous functions (CCFs) on 2ω to indices for
Π0

1 classes representing their set of zeroes and conversely.

This allows us to transfer index set results. For example,

• The index set of CCFs which have exactly c zeros for any
fixed c ≥ 1 is D0

2-complete.

• The index set of CCFs which have exactly c computable
zeros for any fixed c ≥ 1 is D0

3-complete.

• The index set of CCFs which have more than c zeros for
any fixed c ≥ 1 is Σ0

2-complete.

• The index set of CCFs which have more than c

computable zeros for any fixed c ≥ 1 is Π0
3-complete.
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One more theorem about tree representations

In fact, polynomial-time computable trees suffice to represent
all Π0

1 classes.

Of course, must say what we mean by polynomial-time
computable tree. In 2ω it is straightforward; if we were
dealing with Π0

1 classes in a different space we would have to
do some work.

Given a computable function ϕ for a tree T , we approximate
T by Ts, where

σ ∈ Ts ⇔ ϕs(σ)↑ or ↓= 1.

The p-time tree P is defined by

σ ∈ P ⇔ (∀τ ⊂ σ)[τ ∈ T|σ|].
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Lattice Structure

The collection of all Π0
1 classes ordered by inclusion forms a

distributive lattice, denoted EΠ.

Top and bottom: 2ω and ∅

Meet and join: ∩ and ∪

Atoms (minimal elements): singletons (computable paths)

Complemented elements: clopen sets (finite unions of
intervals)

Intervals in the lattice: [P, P ′] = {Q ∈ EΠ: P ⊆ Q ⊆ P ′}
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Once we have a lattice, we can look at intervals of and
embeddings into the lattice, as well as definability. There are
several computably isomorphic (though order-reversing)
settings we can work in to obtain these results.

• EΠ itself;

• the lattice of c.e. ideals/filters of the countable atomless
Boolean algebra Q;

• the lattice of c.e. ideals/filters of 2<ω;

[Isomorphisms laid out in CCDH and W]
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The isomorphic setting we will use is the c.e. ideals of 2<ω:

A string σ ∈ 2<ω is a nonextendible node of the Π0
1 class P if

[σ] ∩ P = ∅.

If [T ] = P for a computable tree T , σ /∈ T is nonextendible,
and σ ∈ T such that all extensions of σ dead-end is also
nonextendible.

The nonextendible nodes of P for any Π0
1 P form a c.e. ideal

of 2<ω; can see the isomorphism is order-reversing.
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Intervals

There are exactly two isomorphism types for nontrivial end
segments of EΠ.

– Cholak, Coles, Downey, Herrmann (CCDH):

If P ( 2ω is a clopen Π0
1 class, then [P, 2ω] ∼= EΠ computably.

If P,Q ∈ EΠ are nonclopen, then [P, 2ω] ∼= [Q, 2ω] computably.

– Cenzer and Nies (CN2):

If P ∈ EΠ is nonclopen, then [P, 2ω] 6∼= EΠ.
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The computable isomorphisms are easiest to see in the setting
of c.e. ideals, where we are looking at an initial segment
(interval of all ideals contained in the given ideal).

The root set of an ideal I is the minimal generating set:
{σi}i∈I such that I = {τ : (∃i ∈ I)(τ ⊇ σi)} and
i 6= j ⇒ σi ⊥ σj .

A clopen Π0
1 class corresponds to an ideal with a finite root

set of size k + 1, say; we may map the ith element to 1i0,
0 ≤ i < k, with the final element mapping to 1k. (If the root
set has size 1 map it to the empty node.) Fill in 2<ω in the
natural way; this generates an isomorphism on ideals.
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A basis of an ideal is a set B that generates the ideal such
that any two elements of B are incomparable.

For the nonclopen isomorphism we need a lemma:
Any c.e. ideal has a c.e. basis.

Given a nonclopen Π0
1 class, let {σi}i∈ω be a c.e. basis for the

associated c.e. ideal. We’ll map it to one standard nonclopen
ideal: the one with root set {1j0 : j ∈ ω}. Map the basis to
the root set (in order of enumeration) and fill in 2<ω in the
natural way; the map generated is an isomorphism between
the two initial segments of ideals.
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The nonisomorphism between end segments starting with
clopen or nonclopen Π0

1 classes is harder to prove.

(CN2) is a contradiction argument. Nies later found a
Σ0

3-definable difference in the setting of c.e. ideals of the
countable atomless Boolean algebra Q.

For two ideals A,E ∈ I(Q), A is small in E (A ⊂s E) if
A ⊂ E, E is noncomplemented in I(Q), A is
noncomplemented in [0, E], and if Y ⊆ A is complemented in
[0, E], then Y is also complemented in I(Q).

Let β be the statement ∃E ∃A (A ⊂s E). I(Q) � β but for
nonprincipal (corresponding to nonclopen Π0

1 class) ideal M ,
[0,M ] 6� β.
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Thin classes

A Π0
1 class P is thin if every Π0

1 subclass of P is relatively
clopen; that is, for each Q ⊆ P there is clopen C ⊆ 2ω such
that Q = P ∩ C.

The thin Π0
1 classes are exactly those P such that [∅, P ] is a

Boolean algebra (i.e. distributive, complemented lattice) -
hence thinness (including finite) is definable in EΠ.

The index set of thin classes is Π0
4-complete.
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Perfect thin classes

A Π0
1 class is perfect if it has no isolated paths. In other

words, every extendible node of its representative tree has at
least two incomparable extensions.

Perfect thin classes P are exactly those such that [0, P ] is an
atomless Boolean algebra, because a computable path must
be isolated in a thin class; hence they are definable in EΠ.

CCDH show that perfect thin classes witness degree
invariance of the array noncomputable degrees. That is, each
anc degree is represented by a perfect thin class and all
perfect thin classes have anc degree; definability implies
invariance under automorphisms. In fact they form an orbit.
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Minimal classes

A Π0
1 class P is minimal if every Π0

1 subclass of P is finite or
cofinite in P .

The minimal Π0
1 classes are the atoms when working with E∗Π

(:= EΠ modulo finite difference).

The minimal classes with noncomputable paths are exactly
the thin classes with exactly one non-isolated point.

The index set of minimal classes is Π0
4-complete.
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Comparisons between EΠ and E , the lattice of c.e. sets, are
often fruitful lines of research.

Nies proved that if an interval of E is not a Boolean algebra,
then it has an undecidable theory (in fact its theory
interprets true arithmetic).

Cenzer and Nies (CN1) proved that there are intervals of EΠ

that are not Boolean algebras but have decidable theories.

The proof is via E∗Π.
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Given a lattice (L,≤) we denote join (l.u.b.) by ∨ and meet
(g.l.b.) by ∧; the greatest and least elements are 1 and 0.

(L,≤) satisfies the dual reduction property if for any a, b ∈ L,
there exist a1 ≥ a and b1 ≥ b such that a1 ∨ b1 = 1 and
a1 ∧ b1 = a ∧ b.

(CN1) step 1: For any finite distributive lattice L that
satisfies the dual reduction property, there is a Π0

1 class P

such that [∅, P ]∗ ∼= L.

46



'

&

$

%

Small pieces of proof:

For one-element L, any finite P will do.

For two-element L, P must be minimal, so [∅, P ]∗ will have
two elements.

For larger L, the construction of a minimal Π0
1 class is

generalized: make P with subclasses that are “minimal over”
each other (aligned with the structure of L).
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(CN1) step 2: For the P constructed, [∅, P ] is isomorphic to a
sublattice of the P(N) that is closed under finite differences.

Lachlan: If a lattice L ⊂ P(N) is closed under finite
differences, then the theory of L is many-one reducible to the
theory of L∗.

(CN1) step 3: The theory of [∅, P ] is many-one reducible to
the theory of L (the original finite lattice) and is hence
decidable.
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So in E , “not a Boolean algebra” ⇒ “interprets true
arithmetic”.

In EΠ, “not a Boolean algebra” doesn’t even imply
“undecidable”.

However, if P ∈ EΠ is decidable and [∅, P ] is not a Boolean
algebra, then the theory of [∅, P ] interprets true arithmetic.

Decidability for a Π0
1 class P means the tree T with no dead

ends such that [T ] = P is computable.
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Some topics we didn’t cover

• Π0
1 classes in ωω, R, or [0, 1]

• The Cantor-Bendixson derivative and rank

• Reverse mathematics and Ramsey theory

• The structure of the lattice [P, 2ω] for P nonclopen

• More examples and applications: graph theory and
combinatorics, orderings, nonmonotonic logic
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