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Abstract. Let EΠ denote the collection of all Π0
1 classes, ordered

by inclusion. A collection of Turing degrees C is called invariant
over EΠ if there is some collection S of Π0

1 classes representing
exactly the degrees in C such that S is invariant under automor-
phisms of EΠ. Herein we expand the known degree invariant classes
of EΠ, previously including only {0} and the array noncomputable
degrees, to include all highn and non-lown degrees for n ≥ 2. This
is a corollary to a very general definability result. The result is
carried out in a substructure G of EΠ, within which the techniques
used model those used by Cholak and Harrington [6] to obtain
the same definability for the c.e. sets. We work back and forth
between G and EΠ to show that this definability in G gives the
desired degree invariance over EΠ.

1. Introduction

A Π0
1 class is the collection of infinite paths through a computable

subtree of the complete binary-branching tree, 2<ω. These classes be-
came important in computability theory initially because one may en-
code many structures into the complete binary-branching tree in such
a way that the paths of a Π0

1 class encode all examples of a specific sub-
structure, such as prime ideals of a c.e. commutative ring. By proving
results about the paths of Π0

1 classes in general one may draw conclu-
sions about, e.g., the degrees of these substructures. As a result, the
collection of Π0

1 classes as a whole, called EΠ after E , the lattice of c.e.
sets, has also become the object of much study. For general background
on Π0

1 classes and EΠ, see [1, 2, 4].
A collection of Turing degrees is called invariant over a structure P

if it corresponds to a subset of P that is closed under isomorphisms.
Degree invariance argues for the naturality of a collection of degrees
with regard to P . For example, {0} is degree invariant over E by
correspondence to the finite sets and {0′} by the creative sets (Har-
rington; see Soare §XV.1 [12]). Invariance of the high1 and non-low2
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degrees, proved by Martin [10] and Lachlan and Schoenfield [8, 11], re-
spectively, led Martin to conjecture that the nontrivial degree invariant
classes over E were the high2n−1 and non-low2n classes; this was later
refined to conjecture these were exactly the nontrivial invariants from
among the jump classes (non-)highn and (non-)lown (see Harrington
and Soare [7]).

Cholak and Harrington [6] resolved Martin’s conjecture negatively
with a sweeping definability result that gives, as a corollary, the degree
invariance over E of the classes highn and non-lown for all n ≥ 2. In
this paper we prove the Cholak and Harrington result in a setting that
gives the same degree invariance results for EΠ; in particular, we have
the following theorem.

Theorem 8.3. For all n ≥ 2, the highn and non-lown c.e. degrees are
invariant over EΠ.

This greatly expands the known invariant classes of EΠ, as the only
other examples are {0} and the collection of array noncomputable (anc)
degrees, the latter shown by Cholak, Coles, Downey, and Herrmann [5]
via perfect thin Π0

1 classes. Note that though the present result is for
EΠ, the techniques are squarely in the realm of E .

The proof is carried out in G, an end segment of the Π0
1 classes

containing all classes which include a particular non-clopen subclass.
Usually that class is a singleton f , so the elements of G are exactly the
Π0

1 classes containing f . We will show in §3.1 that degree invariance
in G gives degree invariance in EΠ. It appears that using a restricted
structure such as G is necessary so that finitely-many stages of con-
struction are guaranteed not to use up all the room to work. In EΠ

as a whole, we could eliminate all paths in the tree by truncating only
the strings 0 and 1, which would be analogous to enumerating all of
ω in two stages; in G truncating finitely-many nodes always leaves
infinitely-many paths in the tree.

The motivation for looking at G stems from our earlier paper [13], in
which the quotient structure G♦ of G is proved isomorphic to E∗, the
c.e. sets modulo finite difference. The equivalence relation =♦ which
gives rise to G♦ is “eventual equality”; if f is the computable singleton
included in all elements of G, then A =♦ B if and only if for some n,
A ∩ [f � n] = B ∩ [f � n]. One might hope the present result would be
a corollary to that isomorphism, but the map does not preserve Turing
degree, and in fact Turing degree is not well-defined in G♦ ([13], Claim
6.3). However, we will still use the =♦ perspective extensively and
explicitly; as will be explained in §4, we need an analogue to working
modulo finite difference. In E the close relationship between sets that
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are ∗-equal is essential for constructions with injury to work. The
relationship between Π0

1 classes that are ♦-equal is not as close (in
particular they need not be Turing equivalent), but we will show we
still can succeed working only up to a principal ideal.

This paper is organized as follows: §2 contains the basic definitions
and conventions, and §3 discusses definability and invariance. §4 de-
fines =♦ and related notions, including new versions of the Friedberg
and Owings Splitting Theorems. §§5–8 give the definitions and proofs
leading to the main result, and §9 makes some comments on the general
proof scheme and surveys open questions.

Notation for functions and sets, and computability-theoretic termi-
nology, will follow Soare [12].

2. Ideals and G

Although our results will be for EΠ, we will actually work in one of
two isomorphic structures, I(Q) or I(2<ω), of c.e. ideals. As shown
in Cholak, Coles, Downey, and Herrmann [5] and our [13], these three
structures are computably isomorphic in a natural way, though when
one moves from Π0

1 classes to ideals or vice-versa, order is reversed.
I(Q) is the lattice of c.e. ideals of the countable atomless Boolean

algebra, Q. One may view Q as a collection of propositional formulas
modulo tautological equivalence and ordered by logical implication,
where the independent elements {pi : i ∈ ω} generate Q. An ideal of Q
is a subset I closed under disjunction and downward under implication
(if σ ∈ I and τ → σ, then τ ∈ I). The least element of the lattice
I(Q) is denoted 0, and is the equivalence class of logically contradictory
formulas; the greatest element is Q.
I(2<ω) is the lattice of c.e. ideals of 2<ω, the set of all finite binary

strings. The notation we use is standard, but we highlight a few: |σ|
is the length of σ, σ ⊆ τ means τ extends or equals σ, and τ � i is the
initial segment of τ of length i; that is, the unique string σ ∈ 2<ω of
length i such that σ ⊆ τ . The concatenation of strings σ and τ will be
denoted σaτ or just στ . In 2<ω an ideal is a set closed under extension
(if σ ∈ I, every τ ⊃ σ is in I) and meet (if both σa0 and σa1 are in I,
so is σ). The least element is ∅ and the greatest is 2<ω.

In both settings, the ideal generated by a set X, denoted 〈X〉, is the
closure of X under the appropriate operations.1 A finitely-generated
ideal is called principal ; in Q this is equivalent to generation by a single
element but in 2<ω it is not. To distinguish, in I(2<ω) we call the ideal

1This notation is identical to that which will be used for the pairing function,
but which is intended should be clear in context.
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generated by a single string σ the cone or interval above σ.2 In both
structures least upper bound (join) is X ∨ Y = 〈X ∪ Y 〉, and greatest
lower bound (meet) is intersection.

An ideal is c.e. if it is computably enumerable as a set. Principal
ideals are computable and we refer to them without using an enumer-
ation. By convention, we will enumerate nonprincipal ideals as nested
sequences of principal ideals: the generating sequence {as : s ∈ ω} for
the ideal A gives stagewise approximations As := 〈at : t ≤ s〉. We will
always assume our generating sequences are pairwise disjoint, meaning
for s > 0, 〈as〉 ∩ As−1 = 0 or ∅ (as appropriate). Any c.e. generat-
ing sequence may be computably converted into a pairwise disjoint c.e.
generating sequence, in either I(Q) or I(2<ω).

In X = I(Q) or I(2<ω), we make the following definition.

Definition 2.1. Fix M ∈ X nonprincipal. G is the initial segment
{I : I ⊆M}.

All copies of G are computably isomorphic (Cholak, Coles, Downey,
and Herrmann [5]),3 so this is well-defined; when we must distinguish
which M is the top element we will write GM . For purposes of defin-
ability we will restrict to M maximal.

2.1. Terminology and notation that bears highlighting. We fix
an enumeration of all ideals of G (i.e., c.e. subideals of M) and denote
it {Ie : e ∈ ω}. We also fix an enumeration {m0,m1, . . .} of all elements
of M (not just a generating set), and let x C y indicate x is enumerated
before y. Let PEx be the principal ideal generated by all elements of
M enumerated up to and including x, and PCx the ideal generated
by all elements of M enumerated up to but not including x. When
we know which mi ∈ M we are working with, we have the shorthand
P<i := PCmi

and P≤i := PEmi
.

In I(2<ω) we will refer to the cones off an infinite sequence x ∈ 2ω.
These are all the cones 〈σ〉 such that σ without its last bit is an initial
segment of x but σ 6⊂ x. For example, the cones off 0ω are the cones
〈0n1〉 for all n ∈ ω. Also in I(2<ω) we will make extensive use of
GM0 ⊂ I(2<ω), where M0 = 2<ω − {0n : n ∈ ω}.

Recall for c.e. sets X, Y with enumerations {Xs}, {Ys} we define

X \ Y = {x : ∃s(x ∈ Xs & x /∈ Ys)},

2This too is a slight abuse, as usually the cone or interval generated by σ refers
to the collection of all infinite sequences that extend σ.

3If M is principal, the initial segment is computably isomorphic to I(Q) [5];
Cenzer and Nies showed G 6∼= I(Q) [3].
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X ↘ Y = (X \ Y ) ∩ Y , and X − Y = X ∩ Y . The last need not be
a c.e. set; if we try to make an analogous definition for ideals we find
it not only need not be a c.e. ideal, it need not be an ideal at all. The
intersection of X with the set-theoretic complement of Y (a direct lift
of the E definition) is rarely an ideal, and the ideal complement of Y
(toward an analogous definition) need not exist.

We will, however, use the− notation to mean set-theoretic difference,
with the understanding that the set of elements so obtained is neither
c.e. nor an ideal in general. However, the notation X will mean the
ideal complement of X; there is only one place where we want a set-
theoretic complement and we will use − for it.

The other two subtraction operations have sensible ideal versions
and are useful. X \ Y is the ideal

{x : ∃s(x ∈ Xs & 〈x〉 ∩ Ys = 0)},
and X ↘ Y is (X \ Y ) ∩ Y . For an ideal Z, if there are two ideals
which meet to 0 and join to Z we will call them a split of Z; note that
by staggering our enumerations we can view X ↘ Y and Y ↘ X as a
split of X ∩ Y , though it need not be nontrivial.

3. Definability and invariance

The main result herein has to do with definability, and as a corollary
invariance. For our purposes there are two kinds of each, beginning
with set invariance and degree invariance. Given a structure P , the
collection S ⊆ P is set invariant if it is closed under automorphisms
of P . We will use the term “set invariant” regardless of whether the
elements of P are actually sets. When the elements of P have Turing
degree, we make the following definition.

Definition 3.1. A collection of degrees C is (degree) invariant in P if
there is S ⊆ P such that

(i) For every degree d ∈ C, there is X ∈ S of degree d,
(ii) If X ∈ S has degree d, then d ∈ C, and
(iii) S is set invariant.

Invariance is one way to argue for the naturality of a property of
degrees; if the collection of degrees with that property corresponds to
an invariant collection of elements of P , one could argue this indicates
the property is more “internal” to P than one which corresponds to no
such collection.

The two kinds of definability at work here are in the language of
arithmetic and of inclusion, the latter the order relation for all of
our structures (and the only relation automorphisms must preserve).
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The first will be called arithmetic definability, and is used for degree-
theoretic work: we are concerned with which level of the arithmetic
hierarchy our formulas occupy so that our result can relate to the dou-
ble jumps of c.e. ideals. The second is definability in the language of
inclusion, or {⊆}-definability for short; since the only relation in any
of our structures P is ⊆, this kind of definability implies set invariance
in P . Here, the quantifier depth of formulas (or even that formulas are
finitary) is not essential information; we need merely Lω1,ω-definability
in {⊆}. In Cholak and Harrington’s double jump paper [6], the dis-
tinction is not always sharply drawn, but here, with a less well-studied
structure at hand, we will be careful to specify which we mean.

3.1. Pushing invariance up. To obtain degree invariance results for
EΠ via G we must ensure first that the Cholak–Harrington result holds
in G, and second that it transfers to I(Q) and hence EΠ.

The first step involves both arithmetic and {⊆}-definability. Check-
ing arithmetic complexity will happen along the way, as definitions are
made. The primary relation for which {⊆}-definability is needed is ⊆♦.
It is clear that ⊆♦ is definable in I(Q), because there being principal
is equivalent to being complemented (see [5]):

A ⊆♦ B ⇔ (∃P )[P principal & A ∨ P ⊆ B ∨ P ].

In I(Q) we may also definably work within a fixed copy of G, with a
parameter for its maximal element M . It is not clear, however, that
this can be pushed down to G; in fact it is open whether being prin-
cipal is finitarily definable in G. Fortunately we don’t actually care
whether ⊆♦ is {⊆}-definable in G, but only that it is invariant under
automorphisms of G. The following result shows that definability in
I(Q) is sufficient for that invariance (and that being principal is Lω1,ω

definable in G). Hence, our {⊆}-definability work will be in I(Q) with
a parameter for M , though that will be entirely in the background for
the remainder of the paper.

Lemma 3.2. Any property {⊆}-definable in I(Q) (possibly with pa-
rameter M) is invariant in G.

Proof. Let P be a property {⊆}-definable in I(Q) (with parameter
M) and let I ∈ G be an ideal with property P . Let Φ : G → G
be an automorphism; Φ extends to an M -preserving automorphism
Ψ : I(Q) → I(Q) such that Ψ � G = Φ ([13], Claim 5.2). The image
Ψ(I) = Φ(I) must have property P by definability in I(Q), and hence
P is preserved by Φ. �
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We next show that it does not matter which copy of G we work in
provided its maximal element is a maximal ideal of I(Q). The following
result is used in [13] but not explicitly shown. It allows us to take our
invariant collection of ideals in G and unambiguously refer to its “iso-
morphic copy” in other copies of G, since invariant classes are unions
of orbits.

Lemma 3.3. Given M1, M2 maximal c.e. subideals of Q, an orbit UM1

of GM1, and isomorphisms Φ,Ψ : GM1 → GM2, the images Φ(UM1) and
Ψ(UM1) are equal.

Proof. To show Φ(UM1) is closed, suppose A ∈ Φ(UM1) and B = Θ(A)
for some automorphism Θ of GM2 . Then Φ−1 ◦ Θ ◦ Φ takes Φ−1(A)
to Φ−1(B), showing B ∈ Φ(UM1). Likewise, Ψ(UM1) is closed under
automorphisms of GM2 .

Now let A ∈ Φ(UM1) and B ∈ Ψ(UM1). Then Φ−1(A) is automorphic
to Ψ−1(B) via some automorphism Θ : GM1 → GM1 , so A and B are
automorphic in GM2 by Ψ−1 ◦ Θ ◦ Φ. This shows that any element of
Ψ(UM1) is automorphic to any element of Ψ(UM1), and in particular
(letting Ψ = Φ) that each image is transitive. Since each image is
closed, they are orbits and must be equal. �

We will denote the isomorphic copy of UM1 in GM2 by UM2 . We
use the same subscript notation for invariant classes to indicate in
which copy of G we are working. As shown in [13], taking the union
of isomorphic copies of an orbit in GM over all maximal M gives an
orbit in I(Q) of the same arithmetic complexity. Taking the union of
invariant classes hence gives an invariant class; it is this union that
will give the degree invariance result for I(Q). There is one more
component to the proof, however, which follows from automorphism
results of Cholak, Coles, Downey, and Herrmann [5].

Lemma 3.4. For a fixed orbit U and any maximal M1, M2, the sets
{deg I : I ∈ UM1} and {deg I : I ∈ UM2} are equal.

Proof. Given I ∈ UM1 , we show there is some J ∈ UM2 with J ≡T I.
Choose a computable automorphism Φ of I(Q) taking M1 to M2. Φ
is induced by a unique automorphism of Q ([5], Theorem 6.1) which
is also computable ([5], Theorem 6.4). Hence J = Φ(I) has the same
Turing degree as I, and by Lemma 3.3 J must be in UM2 . �

Corollary 3.5. If a collection C of c.e. degrees is invariant over G
via S, it is invariant over I(Q) via the union of SM ⊆ GM over all
maximal ideals M ∈ I(Q).
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Corollary 3.6. If a collection C of c.e. degrees is invariant over G, it
is invariant over EΠ.

4. Adding diamonds to everything

The main technical difficulty in moving results to G is that although
principle is analogous to finite, it is far from equivalent. In E , con-
structions are typically carried out modulo finite difference, at least
implicitly. The fact that A =∗ B implies both A ≡T B and that A
is c.e. if and only if B is c.e. allows constructions to succeed despite
injury. For example, if we wish to construct a split of C, it is enough
to build A and B such that

(4.1) A ∪B = C and A ∩B =∗ ∅,

though the definition of split has A ∩ B = ∅. In general we do not
make any special note of this. It is natural (and necessary) to make
the same allowance in G, constructing a split of Z via ensuring

(4.2) X ∨ Y = Z and X ∩ Y principal,

but we must be explicit about it. In the c.e. sets, the existence of
B satisfying (4.1) implies the existence of some B̂ =∗ B satisfying

A∪ B̂ = C and A∩ B̂ = ∅, where B̂ ≡T B is also c.e. In the c.e. ideals,
the existence of Y satisfying (4.2) implies nothing. Not only need there

not be a c.e. ideal Ŷ ≡T Y giving X ∨ Ŷ = Z and X ∩ Ŷ = 0, there
need not be any ideal at all that gives a true split of Z with X.

For example, in GM0 let I = 〈1n0, 02n1 : n ≥ 1〉; it is all but the first
cone off 1ω and every other later cone off 0ω (see §2.1). It is clearly
complemented outside 〈1〉 by 〈02n+11 : n ≥ 0〉, the remaining cones

off 0ω. However, if Î is to be the complement of I, I ∨ Î = M0 must
contain in particular {1n : n ≥ 1}, so Î must contain some 1m. Hence

all cones 〈1n0〉 for n ≥ m are in Î, giving I ∩ Î 6= ∅.
Logistically, making the mod-principal viewpoint explicit usually

adds an extra index to requirements, labeling the principal ideal at
hand. Globally it means we must prove additional “behind the scenes”
theorems, as well as ensure that arithmetic complexity does not in-
crease and invariance under automorphisms still holds, as discussed in
§3.1.

We define the equivalence relation =♦ on G by

A =♦ B ⇐⇒ (∃m ∈M)[A ∨ 〈m〉 = B ∨ 〈m〉].

In other words, A =♦ B when their differences are contained in a
principal subideal of M . We say m or 〈m〉 witnesses A =♦ B, and
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likewise for other mod-principal relations. We also define

A ⊆♦ B ⇐⇒ (∃m ∈M)[A ⊆ B ∨ 〈m〉].
As shown in [13], ⊆♦ is Σ0

3 in the language of arithmetic, just as ⊆∗ is.
The quotient structure G/=♦ is denoted G♦.

Finally, we make a definition to be used solely for arithmetic defin-
ability, analogous to (∃∞x) ≡ (∀n)(∃x > n) for ω.

Definition 4.1. Let (∀m ∈ M)(∃x ∈ M)[x 6∈ 〈m〉 & ϕ(x)] abbre-
viate (∃npx)[ϕ(x)]. Verbally this will be described as a nonprincipal
collection; a set which may not itself be an ideal, but which cannot be
contained in any principal ideal.

Since M is maximal, and membership in a maximal or principal ideal
is computable, there is no arithmetic complexity increase over (∃∞x).
We may also refer to a non-ideal set contained in a principal ideal as a
principal collection.

4.1. ♦-complementation. The mod-principal example at the start
of the section is ♦-splitting. For X ⊆ Y c.e. ideals, X is a ♦-split of
Y , denoted X v♦ Y , if there is some c.e. Z ⊆ Y such that X ∩Z =♦ 0
and X ∨ Z =♦ Y . ♦-splitting is a special case of ♦-complementation
modulo an ideal, which comes from the following definition in E .

Definition 4.2. Let X and A be c.e. sets. X is computable modulo
A if there is some c.e. Y such that X ∩ Y ⊆ A and X ∪ Y ∪ A = ω.
Equivalently, X is computable modulo A if there is some computable
R ⊆ X such that X ⊆ A ∪R.

The equivalence is straightforward, letting Y = R if the latter holds,
and R = X \ (Y ∪ A) if the former holds. In E , complementation and
computability are equivalent, and hence it is clear that computablity
mod A is {⊆}-definable in E . In G, principal ( complemented (
computable, and complementation is the correct analogy to preserve
{⊆}-definability.

Definition 4.3. Let G = [0,M ] and let X,A ∈ G. X is ♦-
complemented (♦-c) modulo A if there exists Y ∈ G such that
X ∩ Y ⊆♦ A and X ∨ Y ∨ A =♦ M . Otherwise we say X is ♦-
noncomplemented (♦-nc) modulo A. When A is 0, we may just say X
is ♦-c or ♦-nc.

We may also speak of ♦-(non)complementation within another ideal
Z, where Z then takes the place of M above. A ♦-split of I is exactly
an ideal that is ♦-c mod 0 in I, and we may use both terms. To say
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X is ♦-c modulo A is Σ0
3-definable, just as computability modulo A is,

and {⊆}-definable in I(Q).
Note that we may choose the same principal ideal to witness both the

⊆♦ and the =♦ in Definition 4.3. Along the lines of the equivalence
in Definition 4.2, if there is some ♦-c (modulo 0) c.e. ideal R ⊆ X
such that X ⊆♦ A ∨ R, we can conclude X is ♦-c mod A. This is an
equivalent characterization, ignoring the cosmetic circularity; again it
is shown via letting Y be a ♦-complement of R to obtain the former
from the latter, and R = X \ (Y ∨ A) to obtain the latter from the
former, where this R is ♦-c via (Y ∨ A) \X.

Proposition 4.4. There exists a ♦-nc ideal I within any Z 6=♦ 0,
modulo any A 6=♦ Z, and of any specified Turing degree d.

Proof. Working in 2<ω, let {zi : i ∈ ω} be a disjoint generating set for
Z. To make I of degree at least d, letD be a c.e. ideal of that degree and
f a computable isomorphism from 2<ω to 〈z0〉; set I ∩ 〈z0〉 = f(D).

If deg(Z) ≤ d we may put the cones off za
i 0ω for all i ≥ 1 (i.e.,

{〈za
i 0n1〉 : i ≥ 1, n ∈ ω}) into I. If not, use all zi, but only the

cones 〈za
i 0n1〉 such that |za

i 0n1| is greater than the stage at which zi

is enumerated. This I is ♦-nc in Z modulo any A 6=♦ Z: if Î is a c.e.
ideal such that I ∨ Î ∨ A =♦ Z, then since A 6=♦ Z, it can only cover
coinfinitely-many of the paths za

i 0ω. Hence Î must cover the remaining

infinitely-many, meaning I ∩ Î 6⊆♦ A. �

When we refer to an ideal built “as in Proposition 4.4” with no
reference to Z or d, we mean Z = M and d = 0. Many of these ideals
have a “noncomplementation preservation” property we will need for
Lemma 7.8.

Lemma 4.5. If I is constructed as in Proposition 4.4 with deg(Z) ≤ d,
then if B ⊆ Z is ♦-nc mod A in Z, so is B ∩ I.

Proof. Suppose B ∩ I is ♦-c in Z modulo A via B̂ and principal ideal
P ; without loss of generality let P contain 〈z0〉. We claim that B̂ is in
fact a ♦-complement of B itself. The proof boils down to the fact that
there is very little left over in Z once I is taken out.

Clearly since (B∩I)∨B̂∨A∨P = Z∨P , we haveB∨B̂∨A∨P = Z∨P .

Suppose there is some σ ∈ (B ∩ B̂) − (A ∨ P ). Necessarily it is

za
i 0n for some i, n, since P contains 〈z0〉 and deg(Z) ≤ d. Therefore

〈za
i 0n〉 ⊆ B ∩ B̂, and for all k, 〈za

i 0n+k1〉 ⊆ I. Therefore 〈za
i 0n+k1〉

witnesses B̂∩(B∩I) 6⊆ A∨P , contradicting the choice of B̂ and P . �
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4.2. ♦-splitting theorems. We next prove that the standard split-
ting theorems, which preserve noncomplementation in sets, translate
and extend to preserve ♦-noncomplementation in ideals. We will treat
the Friedberg and Owings theorems separately because we will need the
full strength of Owings in one setting, and the construction method of
Friedberg in another. Both theorems are uniform and both still give
genuine splits, not merely ♦-splits. Because of this, if the principal
ideal P witnesses that B is ♦-c in I (modulo C for Owings), then P
also witnesses the splits of B are ♦-c in I (mod C).

4.2.1. The ♦-Friedberg Splitting Theorem. The Friedberg Splitting
Theorem (see Soare [12], X.2.1) states that a c.e. set splits into disjoint
subsets such that if the original set was noncomplemented relative to
(that is, inside) some c.e. W , so are the splits. The important aspect
of the proof for Cholak and Harrington [6] is that the split X of Y
is built such that for all e, if We ↘ Y is infinite, We ↘ X is also
infinite. Achieving this accomplishes the full statement of Friedberg
Splitting in E because if We ∩ Y is not complemented in We, then
We ↘ Y is infinite. Our translation of the proof builds X such that if
Ie ↘ Y 6=♦ 0, then We ↘ X 6=♦ 0. The following lemma shows that is
sufficient for the desired result in G.

Lemma 4.6. Let X, Y ∈ G. If X∩Y is ♦-nc in X, then X ↘ Y 6=♦ 0.

Proof. Suppose that X ↘ Y =♦ 0. We show X ∩ Y is ♦-c in X by
the c.e. ideal X \ Y . Recalling X ∩ Y = (X ↘ Y ) ∨ (Y ↘ X), we see
X ∩ Y =♦ Y ↘ X. Hence (X ∩ Y ) ∩ (X \ Y ) =♦ (Y ↘ X) ∩ (X \ Y ),
which is clearly 0. We also have (X \ Y )∨ (X ∩ Y ) = X, so X \ Y is a
♦-complement of X ∩ Y in X. �

The same proof actually shows that if X ∩ Y is ♦-nc mod A in X,
then X ↘ Y 6⊆♦ A.

Theorem 4.7 (♦-Friedberg Splitting). For any ♦-nc B ∈ G, there are
♦-nc ideals A0, A1 such that A0 ∩A1 = 0 and A0 ∨A1 = B. Moreover,
if I ∈ G is such that B ∩ I is ♦-nc in I, then Ai ∩ I is ♦-nc in I for
i = 0, 1.

Proof. Let {b0, b1, . . .} be a disjoint generating set for B. We construct
A0, A1 to be a split of B by enumerating each bs into exactly one Ai,
at stage s. Noting the final condition includes that Ai is ♦-nc in M ,
we meet it via the following requirements for all e ∈ ω, m ∈ M , and
i = 0, 1:

R〈e,i,m〉 : Ie ↘ B 6=♦ 0 ⇒ Ie ∩ Ai 6⊆ 〈m〉.
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By Lemma 4.6, for any e such that Ie∩B is ♦-nc in Ie, the antecedent
will hold. We will use the consequent to show Ie ∩ Ai is also ♦-nc in
Ie.
Construction.

Stage s = 0: Enumerate b0 into A0.
Stage s + 1: Choose the least 〈e, i,m〉 such that 〈bs+1〉 ∩ Ie,s 6⊆ 〈m〉

but Ai,s ∩ Ie,s ⊆ 〈m〉 and enumerate bs+1 into Ai. [Notice that some
x ∈ 〈bs+1〉 is in Ie ↘ B outside 〈m〉.] If there is no such triple enumer-
ate bs+1 into A0.
Verification.

We first show all requirements are met. It is clear that each require-
ment acts at most once. Suppose toward a contradiction that 〈e, i,m〉
is the least triple such that R〈e,i,m〉 is not met, and let t be a stage
such that all earlier requirements have ceased acting. By assumption
on R〈e,i,m〉, Ie ↘ B 6=♦ 0 but for all s ≥ t 〈bs+1〉 ∩ Ie,s ⊆ 〈m〉. This
asserts Ie ↘ B ⊆ (Ie ↘ B)t ∨ 〈m〉, which is clearly a contradiction.

Now, suppose I is a c.e. ideal such that B ∩ I is ♦-nc in I but Ai∩ I
is ♦-c in I by X, witnessed by m. We must have (I ∩X) ∩B ♦-nc in
I ∩X; any ♦-complement would also be a ♦-complement of I ∩ B in
I. Hence by Lemma 4.6, (I ∩X) ↘ B 6=♦ 0, so the construction gives
I ∩X ∩ Ai 6⊆ 〈m〉, contradicting the assumptions on m and X. �

4.2.2. ♦-Friedberg Splitting modulo A. The following lemma translates
a strengthened version of Lemma 6.3 in [6]. It is an extension to the
♦-Friedberg Splitting Theorem and will be needed for Theorem 7.2.
We cannot use the Friedberg proof technique to work modulo some set
A, but if we build A concurrently and restrain elements in Ie ∩X from
entering A, to meet the requirements below, we can guarantee X is
♦-nc modulo A.

Lemma 4.8. Assume Y is ♦-nc mod A. If we build X ⊆ Y to meet
the requirements

Re,k : if Ie ↘ Y 6=♦ 0 then Ie ∩X 6⊆ A ∨ 〈mk〉,
then X is ♦-nc mod A.

Proof. If Ie ∨ Y ∨ A ∨ 〈mk〉 6= M , then regardless of how we build
X, it will not be ♦-c mod A via Ie and 〈mk〉. Assume, then, that
Ie ∨ Y ∨A ∨ 〈mk〉 = M . By assumption on Y , Ie − (A ∨ Y ) must be a
nonprincipal collection of elements. If Ie ↘ Y ⊆ 〈mj〉 for some j, then
(Ie \Y ) is a ♦-complement mod A to Y , witnessed by 〈mk,mj〉, which
is a contradiction. Hence Ie ↘ Y 6=♦ 0 and we make Ie∩X 6⊆ A∨〈mk〉,
showing again that X is not ♦-c mod A via Ie and 〈mk〉. �
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4.2.3. The ♦-Owings Splitting Theorem. The Owings Splitting Theo-
rem states that a c.e. set that is noncomplemented in an interval may
be split into two disjoint c.e. sets that are noncomplemented in the
same interval (see [12] X.2.5). The translation of Owings Splitting
to G♦ holds as a corollary of the isomorphism between G♦ and E∗,
and the direct translation to G holds as a corollary to that [13]. The
♦-complementation version is as follows.

Theorem 4.9 (♦-Owings Splitting). Suppose C ⊆ B are elements
of G such that B is ♦-nc modulo C. Then there exist c.e. ideals
A0, A1 ⊆M such that

(1) A0 ∩ A1 = 0;
(2) A0 ∨ A1 = B;
(3) Ai ∨ C is ♦-nc modulo C, i = 0, 1;
(4) For any c.e. ideal I ⊆M , if B ⊆ I and relative to I, B is ♦-nc

modulo C, then likewise Ai ∨C is ♦-nc modulo C relative to I
for i = 0, 1.

Proof. Let {b0, b1, . . .} be a disjoint generating set for B. To achieve
(1) and (2) we will enumerate each bs into exactly one of A0, A1, at
stage s. For the rest, for each e ∈ ω, m ∈M , and i = 0, 1 we have the
requirement

R〈e,i,m〉 : Ie ∨ Ai ∨ C ∨ 〈m〉 = M ⇒ Ie ∩ Ai 6⊆ C ∨ 〈m〉.
Though this appears only to address property (3), ensuring Ie is not a
♦-complement of Ai mod C, we will use a strategy that meets (4) as
well. For each 〈e, i,m〉 we have a function g(e, i,m, s).

Construction.
Stage 0: Enumerate b0 into A0 and set g(e, i,m, 0) = 0 for all e, i,m.
Stage s+ 1:

1. Perform this step for every triple 〈e, i,m〉 ≤ s. If there is

an x ∈ P≤g(e,i,m,s) such that x ∈ Ie,s ∩ Ai,s ∩ 〈m〉 ∩ Cs

(the last ideal is well-defined since Cs is principal at every
stage s), set g(e, i,m, s + 1) = g(e, i,m, s). Otherwise set
g(e, i,m, s+ 1) = s+ 1.

2. Choose the least triple 〈e, i,m〉 such that 〈bs+1〉∩Ie,s 6⊆ Cs∨〈m〉,
Ai,s∩Ie,s ⊆ Cs∨〈m〉, and bs+1 E mg(e,i,m,s), and enumerate bs+1

into Ai. If there is no such triple enumerate bs+1 into A0.

Verification. It is clear from the construction that (1) and (2) hold.
We will show (4) holds, which gives (3) as a special case.

Suppose for some e, i, m, and ideal I, Ai is ♦-c in [C, I] by Ie,
witnessed by m. We must show B is ♦-complemented in [C, I].
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Choose s′ large enough that for all 〈e′, i′,m′〉 < 〈e, i,m〉 such that
lims g(e

′, i′,m′, s) < ∞, lims g(e
′, i′,m′, s) = g(e′, i′,m′, s′). Let z be

the maximum of those limit values. Choose s′′ ≥ s′ such that bs B mz

for all s ≥ s′′. Define the c.e. ideal

Ve =
∨

s≥s′′

(Ie,s ∩Bs ∩ P≤g(e,i,m,s)).

Since lims g(e, i,m, s) = ∞ by the assumption that Ie ∩Ai ⊆ C ∨ 〈m〉,
Ve ∨B = Ie ∨B and hence Ve ∨B =♦ I ∨B because Ai, C ⊆ B.

We now show Ve ∩ B ⊆♦ C, witnessed by P≤s′′ . Suppose for a
contradiction that x ∈ Ve ∩ B, x /∈ C; say x ∈ Ie,s ∩ Bs ∩ P≤g(e,i,m,s)

and x ∈ 〈bs+1〉 for some s ≥ s′′. Then by the construction, at stage
s + 1, bs+1 must be chosen by R〈e′,i′,m′〉 for some 〈e′, i′,m′〉 ≤ 〈e, i,m〉.
If 〈e′, i′,m′〉 = 〈e, i,m〉, then x enters Ai and hence must be in Ai ∩ Ie
which is a subideal of C by assumption on Ie. If 〈e′, i′,m′〉 < 〈e, i,m〉,
then by assumption on s′′ we must have lims g(e

′, i′,m′, s) = ∞, so x
is not a permanent witness for R〈e′,i′,m′〉 and hence must later enter C.
Therefore Ve ∨ C demonstrates B’s complementation in [C, I]. �

5. Patterns, players, and realization

The definitions below of the patterns Pi and the formula ϕP are
essentially identical to the definitions made in Cholak and Harrington
[6], though drastically condensed and with the necessary changes made
to translate them from sets to ideals.

For us, a pattern P = (T ,R,B, `) is a finite tree T with two
distinguished (finite) sets R,B of nodes, and a function ` from
{0, 1, 2, 3} to the power set of T . There is an associated array of

ideals ~U = {U0, U1, U2, U3}. We have distinguished patterns Pi, i ∈ ω,
with the following nodes and associated ideals.

Node Children (L, R) Ideal
b0 b02, b1
b1 U0

bk2 (0 ≤ k ≤ i) rk
2 , r

k
1

rk
1 (0 ≤ k ≤ i) U1

rk
2 (0 ≤ k ≤ i) bk+1

2 , bk3 (bi+1
2 = b4)

bk3 (0 ≤ k ≤ i) U2

b4 b5 (L)
b5 U3

For Pi, the set `(j) contains all nodes associated to Uj. The set R
contains all bk2 for 0 ≤ k ≤ i (R excludes b4). The set B contains all
b-nodes, including bk2.
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For every Pi the root of the tree is b0. We use d(q) to denote the set
of children of node q and u(q) to denote the parent of q. T is partially
ordered by height: q < u(q), and if p ∈ d(q), p < q.

These patterns Pi are examples of special L-patterns ([6] Definition

3.12; L is the set indexing ~U , which is called an L-interpretation).
Many of the results are stated for special L-patterns in general because
they do not rely on particular properties of the Pi.

The main proof will consist of forcing or forbidding certain properties
to hold of arrays of ideals associated to the patterns, as follows. We
think of elements of M as balls.

Definition 5.1. Given pattern P , an L-interpretation ~U , an array
~B = 〈Bp : p ∈ B〉, and c.e. ideals A and C, the formula ϕP(A, ~U, ~B,C)

says there exists an array ~D = 〈Dp : p ∈ T 〉 such that all of the
following hold.

(i) We work in C: (∀p ∈ T )[Dp ⊆ C].

(ii) ~D represents balls flowing down the tree, modulo the contents of
A: (∀p ≤ q ∈ T )[Dp ⊆ Dq ∨ A].

(iii) Every ball that reaches a node in R continues down the tree,
modulo A: (∀q ∈ R) [Dq ∨ A =

∨
{Dp : p ∈ d(q)} ∨ A].

(iv) The array ~B determines movement into B-nodes, modulo A:
(∀p ∈ B)

[
Dp ∨ A = (Bp ∩Du(p)) ∨ A

]
.

(v) Every ball that reaches a node in `(j) is in Uj, modulo A:
(∀j < 4)(∀p ∈ `(j)) [Dp ⊆ Uj ∨ A].

(vi) Item (v) accounts for all balls in both ~D and ~U , modulo A:
(∀j < 4)(∀q ∈ T ) [(Dq ∩ Uj) ∨ A =

∨
{Dp : p ≤ q & p ∈ `(j)} ∨ A] .

Satisfaction of ϕP(A, ~U, ~B,C) may be viewed as a game. Player

BLUE creates ~B, called a B-interpretation or a BLUE strategy, and
player RED reacts with ~D, called an interpretation of P over ~U . RED
must respect both ~B and ~U , but has some control at R nodes: item
(iii) above says all balls must move down from such nodes, but their
children are not in B, so BLUE cannot force the direction of movement.

Note for a fixed pattern P all ~D and ~B are indexed so we may
quantify over them. Just as in [6], ϕP(A, ~U, ~B,C) is an arithmeti-
cally Σ0

3 formula (recall R,B are finite sets) which may also be writ-
ten in the language {⊆}. In fact, it is an L(A) property, where here
L(A) = {A∨B : B ∈ G}. It is easy to check that the conditions above

hold for A, ~U , ~B, and C if and only if for an isomorphism Φ between
L(A) and L(F ), they also hold of F , Φ(~U), Φ( ~B), and Φ(C).

What we will actually force or forbid is more than just ϕP(A, ~U, ~B,C).
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Definition 5.2. Realization of the pattern P by ~U , A, W means for
all possible BLUE strategies ~B there is a ♦-split C of W such that
ϕP(A, ~U, ~B,C) holds and C is ♦-nc modulo A.

Realization of a fixed pattern P is uniformly definable in {⊆} and
arithmetically Π0

5, since ϕP and C v♦ W are Σ0
3 and C ♦-nc mod A

is Π0
3.

Theorem 6.1 below, translating [6] Theorem 4.1, eliminates the need

for the universal quantifier on ~B by establishing a “universal” BLUE
strategy for any given pattern P and collection of possible realizers A,
W , ~U . In the construction for Theorem 7.2, there will be one pattern
in which we play for RED and build C and ~D in reaction to that BLUE
strategy to force realization. In the remaining patterns, we will play
for BLUE, trying to defeat arrays ~D presented by RED or show that
the C at hand is either not a ♦-split of W or is ♦-c mod A.

We will use the following definition, identical to 6.6 in [6].

Definition 5.3. Fix a c.e. ideal A and L-interpretation ~U for
L = {0, 1, 2, 3}. Let JA,~U be the set of special L-patterns P such

that ∃Y (~U,A, Y realize P).

For any fixed P , the statement “P ∈ JA,~U” is {⊆}-definable in I(Q)

and hence invariant in I(Q) andG. In fact, it is again an L(A) property.
Additionally, it has only an extra existential quantifier in front of the
definition for realization. The universal BLUE strategy of Theorem
6.1 will show realization is in fact only Σ0

4, and using Theorem 6.10 or
highness, we may reduce the complexity yet again to ΣA

3 . This means
“P ∈ JA,~U”, though a priori Σ0

6, is also ΣA
3 .

Finally, we collect some basic facts about ϕP and realization for ease
of reference.

Lemma 5.4. (i) For A ⊆ Â, ϕP(A, ~U, ~B,C) ⇒ ϕP(Â, ~U, ~B,C).

(ii) For F ⊆ C, ϕP(A, ~U, ~B,C) ⇒ ϕP(A, ~U, ~B, F ).
(iii) [(∀k < 4)(Vk ∩W = Uk ∩W )] ⇒

[~U,A,W realize P ⇔ ~V ,A,W realize P ].

6. Reducing arithmetic complexity

6.1. A universal BLUE strategy. In this section we reduce the com-
plexity of realization from Π0

5 to Σ0
4, and hence “P ∈ JA,~U” from Σ0

6 to

Σ0
4.
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Theorem 6.1. Fix L, ~U,P , A,W . Uniformly in ~U , P, A, W (indexed

by e) there exists a B-interpretation ~Be such that the following are
equivalent:

(1) There exists a ♦-split S of W such that S is ♦-nc modulo A

and ϕP(A, ~U, ~Be, S).

(2) ~U,A,W realize P.

Proof. It is clear that (2) implies (1), so assume (1). We will show the

Recursion Theorem allows us to assume we have an index e for ~Be.
By (1), we know there exists a ♦-split S of W which is ♦-nc modulo

A and such that ϕP(A, ~U, ~Be, S). We first use a tree of strategies to
create manageable subsplits of all ♦-splits of W ; the tree is 2<ω. We
may enumerate a list of all quadruples (S̃i, Ŝi, zi, ~Di), where S̃i, Ŝi ∈ G,

zi ∈M , and ~Di is an appropriately sized array of c.e. ideals, and assign
all nodes of length i to the ith quadruple. We will ensure for such a node
α that if α is on the true path f , then αa0 ⊂ f if and only if Ŝi and
zi witness S̃i is a ♦-split of W and ~Di witnesses ϕP(A, ~U, ~Be, S̃i) (we
do not yet worry about ♦-complementation modulo A). This is arith-
metically Π0

2 information, and hence is equivalent to some ∀x∃sΘ(x, s)
where Θ is computable and may be found uniformly from the given
parameters. We use Θ for a sort of length of agreement function:

`α(s) = max{x : (∀y < x)(∃sy < s)Θ(y, sy)}.
At each stage s, define the true path approximation fs inductively,
restricting to |fs| ≤ s. If α ⊆ fs, let t be the latest stage < s such
that αa0 ⊆ ft (or 0 if there is no such stage), and let αa0 ⊆ fs iff
`α(s) > `α(t) (that is, if s is α-expansionary); otherwise αa1 ⊆ fs.

The node β = αa0 effectively builds Sβ ⊆ S̃i ∩W . It uses two num-
bers dβ, uβ(s) to define an “interval” from which it may put elements
into Sβ. At the first stage (after initialization) that β ⊆ fs, set dβ to
be a large unused number and uβ(s) to be even larger; halt the stage.
If β ⊆ ft for t > s and both values are defined, set uβ(t) to a new
larger value, and otherwise let uβ(t) = uβ(t− 1). The value of dβ will
stabilize and uβ limit to infinity exactly if β is on the true path. As
usual, nodes are initialized if the approximation to the true path ever
passes to their left or terminates above them.

For every β with a defined interval (dβ, uβ], where β is assigned to

(S̃i, Ŝi, zi, ~Di) and so is building Sβ ⊆ S̃i ∩ W , at stage s put all x
satisfying the following four conditions into Sβ:

(i) x ∈ P≤uβ(s) − P≤dβ

(ii) x ∈ S̃i,s ∩Ws
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(iii) (∀γ)(〈x〉 ∩ Sγ,s = 0)

(iv) (∀γa0 ⊂ β)(x ∈ (Ŝ|γ|,s − 〈z|γ|〉))
The conditions say x is in β’s interval and in the ideal it is emulating,
won’t cause intersection with another split and won’t cause theft from
a higher priority split. Condition (iv) does not blockade us because we
need only at most one node related to a given S̃i to construct Sβ. This
completes the tree construction.

From the enumeration { ~Bj} of all B-interpretations and the Sβ

built on the tree, we define ~Be. Using the ♦-Owings Splitting The-
orem, split each Sβ, β ∈ 2<ω, effectively into Sβ,j, j ∈ ω, preserving
♦-noncomplementation modulo A if Sβ has that property. Define

Be,p ∩ Sβ,j = Bj,p ∩ Sβ,j, where Be,p is the pth ideal of ~Be, and likewise
for Bj,p. By the definition of ϕ, since Sβ,j ⊆ Sβ we have

ϕP(A, ~U, ~Be, Sβ) ⇒ ϕP(A, ~U, ~Be, Sβ,j)

for all j, and by the definition of ~Be,

ϕP(A, ~U, ~Be, Sβ,j) ⇒ ϕP(A, ~U, ~Bj, Sβ,j).

Since the construction of Sβ is uniformly effective in β and the Sβ’s

are constructed to be pairwise disjoint, the construction of ~Be is uni-
form in ~U , P , A, and W , and hence the Recursion Theorem gives us
the index e for ~Be.

All that remains is to show there is a ♦-noncomplemented Sβ v♦ W

such that ϕP(A, ~U, ~Be, Sβ) holds. Assuming (1), we know there is a

quadruple (S̃i, Ŝi, zi, ~Di) such that S̃i is ♦-nc modulo A, Ŝi and zi

witness S̃i is a ♦-split of W , and ~Di witnesses ϕP(A, ~U, ~Be, S̃i); choose
the least such. Let α be the length-i node on f and β = αa0 ⊂ f .
Since Sβ ⊆ S̃i, by Lemma 5.4 we have ϕP(A, ~U, ~Be, Sβ) for this β, so we
need ♦-noncomplementation and ♦-splitting. To this end, we define
some auxiliary ideals.

For γa0 ⊂ β we know S̃|γ| must be ♦-c modulo A, since `γ → ∞
gives Ŝ|γ|, z|γ| witness S̃|γ| v♦ W and ~D|γ| witnesses P(A, ~U, ~Be, S̃|γ|).

Hence
∨
{S̃|γ| : γa0 ⊂ β} is a ♦-split of W that is ♦-c modulo A, and

S̃ := S̃i ∩
⋂
{Ŝ|γ| : γa0 ⊂ β} is a ♦-split of W that is ♦-nc modulo A

(since S̃i is ♦-nc mod A).
Define a pair of c.e. ideals Q,R as follows. Assume t is a stage after

which β is never initialized again. Given x /∈ P≤dβ
, wait for a stage

s ≥ t such that x ∈ P≤uβ(s) − P≤uβ(s−1), or if s = t, x ∈ P≤uβ(t) − P≤dβ
.

If there is any node γ such that x ∈ Sγ,s (β and its predecessors are
prohibited from using x), put x into R. If 〈x〉 ∩ Sγ,s = 0 for all γ, put
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x into Q. Note that while not every element of P≤uβ(s)−P≤uβ(s−1) will
be parceled out, a generating set will be. R and Q are disjoint, and
R ∨Q =♦ M , witnessed by P≤dβ

.

By construction, Sβ =♦ S̃ ∩Q; this gives Sβ v♦ W . Suppose Y is a

♦-complement of Sβ modulo A. We show S̃ is also ♦-c modulo A, by

Y ∩ (Ŝ ∨Q). First consider the join:

[Y ∩ (Ŝ ∨Q)] ∨ S̃ ∨ A = (Y ∨ S̃ ∨ A) ∩ (Ŝ ∨ S̃ ∨Q ∨ A).

The first ideal in the intersection is =♦ M because S̃ contains Sβ. The

second is =♦ M because Ŝ ∨ S̃ is W and hence contains R. Next the
meet:

Y ∩ (Ŝ ∨Q) ∩ S̃ = (Y ∩ Ŝ ∩ S̃) ∨ (Y ∩Q ∩ S̃).

The first ideal in the join is =♦ 0 since Ŝ and S̃ ♦-split W . The
second is ⊆♦ A by assumption on Y , because Q ∩ S̃ =♦ Sβ. Hence by
contradiction, Sβ is ♦-nc modulo A, and we have realization of P by
~U , A, W . �

Corollary 6.2. Whether ~U,A,W realize P is Σ0
4.

6.2. True stage enumerations. In this section we reduce the com-
plexity of realization, and hence of “P ∈ JA,~U”, from Σ0

4 to ΣA
3 .

Definition 6.3. Recall from §2.1 that we fix an enumeration of M and
use it to define the ordering x C y for x, y ∈M . Let {a0 C a1 C . . . } be
the induced ordering of an ideal A’s set-theoretic complement M −A,
and for an enumeration {As}s∈ω of A, label M−As as {as

0 C as
1 C . . . }.

{As}s∈ω is a true stage enumeration if for infinitely-many s, as
s = as.

The following lemma holds by the same proof as Lemma 7.2 in [6],
as it does not depend on the algebraic properties of sets versus ideals.

Lemma 6.4. Any ideal A that is not high has a true stage enumeration.

Note that being a true stage for A and some fixed {As} is Π0
1 and ∆A

0 .
The following theorem translates [6] Theorem 7.3. Recall Definition 4.1
of ∃npxϕ(x), that there exists a collection of x satisfying ϕ(x) that is
not contained in any principal ideal. In particular, ∃np is Π0

2.

Theorem 6.5. Suppose A has a true stage enumeration {As}. Uni-
formly in e there exists a c.e. ideal Fe ⊆ Ie with a computable enumer-
ation {Fe,s} such that for all ♦-splits S of Ie,

(1) if S is ♦-nc modulo A, then (?);
(2) if (?), then S ∩ Fe is ♦-nc modulo A;
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where (?) is the statement

(∃npx = mt)(∃s > t)[s is a true stage & x /∈ As

& x ∈ S & 〈x〉 ∩ Fe,s = 0].

Proof. We drop the index e and assume by the Recursion Theorem that
we have an index for F .

The idea behind meeting (1) is that if (?) fails for S, outside of
some P≤s∗ , if s > s∗ is a true stage such that x C ms, x ∈ S, and
〈x〉 ∩ Fs = 0 (in particular x /∈ F ), then x ∈ As and hence x ∈ A.
Therefore ¬(?) ⇒ S ⊆♦ A ∨ F . If we keep F (or rather, F ∩ S) small,
we get S ⊆♦ A and hence S ♦-c modulo A. For (2), we try to force
S ∩ F to be ♦-nc mod A, and show that if we cannot, (?) must fail.

To meet (1), let {S̃i, Ŝi, yi} be an enumeration ofG×G×M . Whether

Ŝi, yi witness S̃i v♦ I is Π0
2. Since (?) is Π0

3, ¬(?) is Σ0
3 and we may

assume it is written in the form (∃j)Θ(i, j) for some Θ ∈ Π0
2. We have

the requirements

Ni,j : [Ŝi, yi witness S̃i v♦ I & Θ(i, j)] =⇒
(∃R ⊆ F )[R ♦-c modulo 0 & F ⊆♦ Ŝi ∨ A ∨R].

We will use R, which will come from the tree construction, to show S̃i

is ♦-c mod A. To meet Ni,j we simply restrain enumeration of elements

of S̃i into F as much as possible.
To meet (2), let {R̃j, R̂j, zj} be an enumeration of G × G ×M . It

is Π0
2 to tell whether R̂j is a ♦-complement of R̃j witnessed by zj. We

have the requirements

Pi,j,k : [Ŝi, yi witness S̃i v♦ I & R̂j, zj witness R̃j ♦-c modulo 0] =⇒
[R̃j 6⊆ (S̃i ∩ F ) ∨ 〈mk〉 or S̃i ∩ F 6⊆ R̃j ∨ A ∨ 〈mk〉].

We meet Pi,j,k by searching for a ball x /∈ 〈zj,mk〉 and a true stage s

such that x E ms, x ∈ S̃i,s, 〈x〉 ∩Fs = 0, and x /∈ As; if (?) holds there
must be a nonprincipal collection of such x. Once we have x, we feed
bits of 〈x〉 into F as they enter R̂j, to obtain at least one disjunct of
the consequent of P . Requirements with the same i and j may have
comparable witnesses; all others will have disjoint witnesses.

The construction tree is 2<ω; at each stage s there will be a finite
true path approximation fs of length no more than s. Extensions of the
approximation will depend on whether a stage is expansionary; that is,
on whether a particular length function has increased since the last
time the node was on the approximation. To simplify some definitions
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below, let Ssplit(i, s) be the value

max
{
y : (∀x < y)

[
mx ∈ Is ⇒ mx ∈ S̃i,s ∨ Ŝi,s ∨ 〈yi〉

]}
if S̃i,s ∩ Ŝi,s ⊆ 〈yi〉; otherwise let Ssplit(i, s) = 0. Define Rsplit(j, s)

likewise with R̃j, R̂j, zj.
All length-2〈i, j, k〉 nodes δ are assigned to Pi,j,k. Define the function

`δ(s) = max{y : Ssplit(i, s) ≥ y & Rsplit(j, s) ≥ y}.

If δ ⊆ fs, δ
a0 ⊆ fs if s is δ-expansionary and δa1 ⊆ fs otherwise. The

0-children of P nodes will build F .
All length-(2〈i, j〉 + 1) nodes α are assigned to Ni,j. Assume that

since Θ(i, j) is Π0
2 it is written in the form ∀x∃sΘ∗(i, j, x, s) where Θ∗

is ∆0
0. Note that Θ and Θ∗ may be found uniformly from i as required

to apply the Recursion Theorem. Define the function

`α(s) = max{y : Ssplit(i, s) ≥ y & (∀x < y)(∃t ≤ s)Θ∗(i, j, x, t)}.

If α ⊆ fs, then αa0 ⊆ fs if s is α-expansionary and αa1 ⊆ fs otherwise.
The 0-children of N nodes will set restraint on enumeration into F .

The true path f is clearly the lim inf of the fs. As usual, nodes are
initialized whenever fs passes to their left or terminates above them.

To build F , let δ ∈ 2<ω be of length n = 2〈i, j, k〉 and let β = δa0.
Let the current stage be s; assume β ⊆ ft for some t ≤ s and β has
not been initialized since t. If β has no witness xβ to Pi,j,k at s, look
for x = mp meeting all of the following criteria:

x /∈ 〈zj, mk〉, x ∈ S̃i,s, 〈x〉 ∩ Fs = 0, x /∈ As,

〈x〉 ∩ 〈xγ〉 = 0 for all γ ⊂ β & γ <L β except |γ| = 2〈i, j, k′〉+ 1,

x ∈ Ŝi′,s for all i′ s.t. (∃γ)[γa0 ⊆ β & |γ| = 2〈i′, j′〉+ 1], and

(∀t′)[p ≤ t′ ≤ s ⇒ ft′ 6<L β].

If there is such an x let the C-least be xβ. If we ever see xβ enter A,
it is released and β needs a new witness. If xβ is defined and we see

some y ∈ 〈xβ〉 enter R̂j at s, then y is enumerated into Fs+1. This is
the only enumeration into F .

Verification.

Lemma 6.6. All Ni,j are met.
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Proof. Assume Ŝi, yi witness S̃i v♦ I and Θ(i, j) holds. Let γ = αa0 ⊂ f
be such that |α| = 2〈i, j〉 + 1. We build ideals R and Q together as
follows: at a given stage s such that γ ⊆ fs and ŝ is the most recent
stage < s such that γ ⊆ fŝ (or 0 if s is the first such stage), for each
x ∈ P≤s − P≤ŝ put x into R if x ∈ Fs and put x into Q if 〈x〉 ∩ Fs = 0.
It is straightforward to see that R and Q are in fact complements, so
in particular R is a ♦-c subideal of F . To show F ⊆♦ Ŝi ∨ A ∨ R,
consider any x which is ever a witness for some requirement (that is,
such that subideals of 〈x〉 might be put into F ). If x is a released
witness, it is in A. If x is a witness for a lower-priority requirement
than Ni,j it was chosen to be in Ŝi. The only remaining possibility is
that x is a permanent witness for a higher-priority requirement, and as
there are only finitely-many of those the witnesses generate a principal
ideal. �

Lemma 6.7. If S v♦ I is ♦-nc modulo A, then (?).

Proof. For this proof we use the equivalent characterization of ♦-
complementation that X is ♦-c modulo A if there is R ⊆♦ X such
that X ⊆♦ A ∨R, where R is ♦-c modulo 0 in the original sense.

Suppose 〈i, j〉 is the least pair such that Ŝi, yi witness S = S̃i v♦ I,
and j witnesses the failure of (?) for S̃i. By Lemma 6.6, there is some

♦-c R ⊆ F such that F ⊆♦ Ŝi ∨ A ∨ R. Hence S̃i ∩ F ⊆♦ Ŝi ∨ A ∨ R,
and since S̃i∩ Ŝi ⊆ 〈yi〉, in fact S̃i∩F ⊆♦ A∨R. By ¬(?), S̃i ⊆♦ A∨F ;
i.e., up to a principal ideal the portion of S̃i outside F is contained in
A, so combining with the previous containment we get S̃i ⊆ A∨R. We
show S̃i ∩ R witnesses S̃i is ♦-c modulo A. Clearly S̃i ∩ R ⊆ S̃i, and
by the work above S̃i ⊆♦ (S̃i ∩ R) ∨ A. It remains to show S̃i ∩ R is

♦-c modulo 0. Let Q be as in Lemma 6.6. Then Q∨ Ŝi witnesses that
S̃i ∩R is ♦-c mod 0 as follows:

(Q ∨ Ŝi) ∩ S̃i ∩R = (Q ∩ S̃i ∩R) ∨ (Ŝi ∩ S̃i ∩R) =♦ 0 ∨ 0,

because Q and R, and S̃i and Ŝi, are ♦-complements.

(Q ∨ Ŝi) ∨ (S̃i ∩R) = (Q ∨ Ŝi ∨ S̃i) ∩ (Q ∨ Ŝi ∨R) =♦ (Q ∨ I) ∩M,

the second half again because Q and R are complements; Q∨ I =♦ M
because R ⊆ F ⊆ I. �

Lemma 6.8. If (?) holds for S̃i v♦ I, then all Pi,j,k are met, and hence

S̃i ∩ F is ♦-nc mod A.

Proof. Let β = δa0 ⊂ f where |δ| = 2〈i, j, k〉. We first show that if (?)
holds for S̃i, then after some stage s, β has a permanent witness. By



DEGREE INVARIANCE IN THE Π0
1 CLASSES 23

induction, let t be a stage after which β is never again initialized, and
such that if γ ⊂ β or γ <L β and γ ever has a permanent witness, it has
one by stage t. Define the set G = {α : αa0 ⊆ β & |α| = 2〈iα, jα〉+1}.
G is the set of nodes corresponding to higher-priority requirements for
which (?) fails. Since there are only finitely-many such nodes, (?) also
fails for

⋃
{S̃iα : α ∈ G}. Since (?) holds for S̃i (in particular, i is not

one of the iα), it must also hold for S̃i ∩
⋂
{Ŝiα : α ∈ G}. Hence β will

eventually acquire a permanent witness.
Given such a witness x, as we see subideals of 〈x〉 enter R̂j we feed

them into F . Any other requirement with a witness comparable to
x will have the same i, j values and hence be enumerating according
to the same criterion, so any portion of 〈x〉 that does not enter R̂j

stays out of F . Since x /∈ 〈zj,mk〉, there is some y ∈ 〈x〉 such that

〈y〉 ∩ 〈zj,mk〉 = 0. If y is in R̃j, it will show R̃j 6⊆ (S̃i ∩F )∨ 〈mk〉; if it

is in R̂j it will show S̃i∩F 6⊆ R̃j∨A∨〈mk〉. As S̃i∩F has no witnesses
to ♦-complementation mod A, it must be noncomplemented. �

This completes the proof of the theorem. �

We use the uniformity of Theorem 6.5 to make the following defini-
tion.

Definition 6.9. For an ideal A with a true stage enumeration, let ê
denote the computable function such that for all e, Iê = Fe, where Fe

is as defined in Theorem 6.5.

The following two proofs directly translate the proofs of Theorem
8.2 and Corollary 8.3 in [6], where Cholak and Harrington’s Theorem
7.3 is our 6.5 and their Theorem 4.1 is our 6.1. They are included for
readability.

Theorem 6.10. Suppose that A has a true stage enumeration.
P ∈ JA,~U if and only if there is an e and a ♦-split S of Ie such that
there are a nonprincipal collection of x = mt and stages s > t where s
is a true stage, x ∈ S, 〈x〉 ∩ Iê,s = 0, x /∈ As, and ϕP(A, ~U, ~Bê, S ∩ Iê).
Hence for any non-high c.e. ideal A, the statement “P ∈ JA,~U” is ΣA

3 .

Proof. If P ∈ JA,~U , there is some c.e. ideal Ie such that for all ~B there is

some S v♦ Ie that is ♦-nc modulo A and such that ϕP(A, ~U, ~B, S). Let
~B be ~Bê and S the appropriate ♦-nc ♦-split of Ie. Then by Theorem
6.5, there are a nonprincipal collection of x = mt and stages s > t
where s is a true stage, x ∈ S, 〈x〉 ∩ Iê,s = 0, and x /∈ As. That

ϕP(A, ~U, ~Bê, S ∩ Iê) holds follows by Lemma 5.4 from the fact that

ϕP(A, ~U, ~Bê, S) holds.
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Now assume there is a ♦-split S of Ie such that there are a nonprin-
cipal collection of x = mt and stages s > t where s is a true stage,
x ∈ S, 〈x〉∩Iê,s = 0, x /∈ As, and ϕP(A, ~U, ~Bê, S∩Iê). By Theorem 6.5
S ∩ Iê is ♦-nc mod A; note S ∩ Iê is a ♦-split of Iê, and so by Theorem
6.1, ~U,A, and Iê realize P , so P ∈ JA,~U . �

Corollary 6.11. For any A ∈ G, the statement “P ∈ JA,~U” is ΣA
3 .

Proof. By Theorem 6.10 we need only worry about A that are high.
By Corollary 6.2, “P ∈ JA,~U” is Σ0

4 and hence Σ∅′′
2 . By assumption on

A this is ΣA′
2 , and hence “P ∈ JA,~U” is ΣA

3 . �

7. Realizing patterns selectively

The following theorem, which is the heart of the proof, corresponds
to Theorem 6.7 in [6]. We will prove it all at once instead of building
up theorems and corollaries as Cholak and Harrington do, to confirm
in this different structure that everything works out. We note that this
entire construction is uniform; [6] Corollary 6.1 adds nonuniformity
via a second strategy, but even there it is not necessary to obtain the
generalization (all C instead of just C ⊆ W ).

Recall Definition 5.3, that JA,~U is the set of special L-patterns P
such that ∃Y (~U,A, Y realize P).

Theorem 7.1. Given the patterns Pi defined in §5, a c.e. ideal F , and
a ΣF

3 ideal J , there exist a c.e. ideal A ≡T F and L-interpretation ~U
such that mi ∈ J ⇐⇒ Pi ∈ JA,~U .

The rest of the section will be a proof of the theorem. Define W̃ as

in Proposition 4.4 with degree 0 and Z = M ; recall W̃ is then ♦-nc

modulo any I 6=♦ M . Designate some principal subideal of W̃ as W−1.

Using the ♦-Friedberg splitting theorem, split W̃ ∩W−1 uniformly into
W〈i,n〉 for i, n ∈ ω.

Within W−1 we code F into A so that F ≤T A. Let b : M → W−1

be a computable isomorphism, and let b(x) ∈ A if and only if x ∈ F .

The role of the remaining splits of W̃ is to ensure there is a Y such
that ~U,A, and Y realize Pi for mi ∈ J , and to diagonalize against all
such Y for mi /∈ J . Permitting will ensure A ≤T F . Since J is ΣF

3 , and
“is ΨF

n total?” is ΠF
2 -complete, we can construct a uniform sequence of

functionals ΨF
〈i,n〉 such that i ∈ J ⇐⇒ ∃n(ΨF

〈i,n〉 is total). We use the

totality of ΨF
〈i,n〉 to determine the behavior of the construction within

W〈i,n〉. If ΨF
〈i,n〉 is partial, we will make A ∩W〈i,n〉 =♦ W〈i,n〉. If ΨF

〈i,n〉
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is total, within W〈i,n〉 we build ~U〈i,n〉 with all its components contained

in W〈i,n〉 such that ~U〈i,n〉, A, and W〈i,n〉 realize Pi, and such that for all

c.e. ideals C and all j 6= i, ~U〈i,n〉, A, and C do not realize Pj. We will

show this gives the necessary global properties for ~U and A.

7.1. Building within W〈i,n〉. In this subsection we drop the subscript

〈i, n〉 from W , ~U , and ΨF .

Theorem 7.2. Let W̃ be a c.e. ideal built as in Proposition 4.4 (in

particular, W̃ is ♦-nc modulo all I 6=♦ M), W a (fixed) ♦-Friedberg

split of W̃ , and S any ♦-Friedberg split of W . Let ΨF be a functional.
Effectively in i,W , and a B-interpretation ~BS, there exist A, ~U and ~D
such that

(i) if ΨF is total, ~D witnesses ϕPi
(A, ~U, ~BS, S), W and S are ♦-nc

modulo A, and all components of ~U and ~D are contained in S.
(ii) if ΨF is partial, A =♦ W .

Furthermore, for all j 6= i and for all c.e. ideals C, the sets ~U , A, and
C do not realize Pj (this is automatic in (ii)). Moreover, a witness
~Bj,C to nonrealization can be found effectively from j and C, with all
components contained in C.

We set the usual convention on the functional ΨF (e), that its use
ψs(e) is nondecreasing in s and e.

Proof. Of course we cannot know at any finite stage whether ΨF is
total, so we act as though it is. For S and W we must meet the
requirements

R〈p,q〉 : for X ∈ {S,W}, (Ip ↘ X) 6⊆ A ∨ 〈mq〉.

By Lemma 4.8, these requirements ensureW and S are ♦-nc modulo A.
We meet R〈p,q〉 by waiting for a ball in (Ip ↘ X)∩〈mq〉 and restraining
it out of A.

For ~BS and S we have one global requirement:

Q : build ~U and ~D such that ~D witnesses ϕPi
(A, ~U, ~BS, S).

We also have local negative requirements for each j 6= i and c.e. ideal
C:

Nj,C : build a B-interpretation ~Bj,C such that ∀S̃ v♦ C,∀ ~X,

Nj,C,S̃, ~X : ~X does not witness ϕPj
(A, ~U, ~Bj,C , S̃)

or S̃ is ♦-c modulo A.
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We enumerate only balls from S into the Ui and Di. To meet Q we
simply respond to ~BS (i.e., to BLUE) to satisfy Definition 5.1 of ϕP :
If x is a ball and p ∈ T , then if p ∈ Bi and x ∈ Du(p) (where we let
Du(b0) = S), then if x enters Bp we put x into Dp, and else not. If
p ∈ Ri and x ∈ Dp then x must enter Dq for some q ∈ d(p), but we get
to choose which one. If p ∈ `(j) for some j and x ∈ Dp we must put x
into Uj.

We meet Nj,C,S̃, ~X by manipulating the movement of balls on Pi and

Pj within our constraints. We control the RED moves on Pi via ~D

and the BLUE moves on Pj via ~Bj,C (which forces ~X’s hand). RED

controls his own moves on Pj via ~X and BLUE controls his own moves

on Pi via ~BS.
For all balls on all patterns, our default move is down and left, unless

required otherwise to meet a negative requirement as described Lemma
7.4 below. Our goal is to get ~X to want some ball x to be in a different
U -ideal from the one that Q has put it into. We will show in Lemma
7.3 that we can get a permanent witness x for any Nj,C,S̃, ~X such that

S̃ is ♦-nc, and in Lemma 7.4 that with such an x we can make ~X fail
to witness ϕPj

(A, ~U, ~Bj,C , S̃).

7.1.1. Construction nodes and their duties. Before giving the construc-
tion, we define restraint : if β sets restraint on x, not only x but all
elements of 〈x〉 and all y such that x ∈ 〈y〉 are restrained with priority
β from being enumerated into A; note that this is a principal collec-
tion. Restraint is only set once; if later another node wishes to use x
for a different purpose, the restraint on x is still priority β (this is not
needed for the present theorem, but will be used to obtain A ≤T F for
Theorem 7.1).

The organization of the construction is on the tree 2<ω. Fix a listing
of all tuples (j, C, S̃, Ŝ, z, ~X) where j 6= i, C, S̃, and Ŝ are c.e. ideals,

z ∈M , and ~X is an interpretation of Pj over ~U . Assign all α ∈ 2<ω of

length 2e to the eth such tuple. It is Π0
2 to say whether Ŝ, z witness S̃

is a split of C, so we use that as our criterion for putting αa0 on the
true path. Define a “length of agreement” to that end:

`(α, s) = max{y : (∀x < y)[mx ∈ Cs →
mx ∈ 〈z〉 ∨ mx ∈ (S̃s ∨ Ŝs)− (S̃s ∩ Ŝs)]}.

The first time fs gets to extend α it goes to αa0, and afterward it only
goes to αa0 if s is α-expansionary. Then αa0 ⊂ f (for α = f � (2e))

⇐⇒ lim infs `(α, s) = ∞⇐⇒ Ŝ, z witness S̃ is a ♦-split of C.
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Each odd-length node has multiple duties. Suppose β is accessible at
stage s, where |β| = 2e+1. If ΨF (e)[s]↑, halt the stage. Otherwise, for

e = 〈p, q〉, if a ball x enters (Ip ↘ W )∩ 〈mq〉 at stage s and β does not
already have another such ball restrained, set A-restraint with priority
β on the C-least such x, if it is not already restrained. Likewise β may
set restraint on a ball in (Ip ↘ S) ∩ 〈mq〉.

If the final bit of β is 0 it will furthermore try to get balls for its
collection, to use to satisfy Nβ := Nj,C,S̃, ~X . Each β will have an “inter-
val” P≤uβ

− P≤dβ
containing the balls Nβ might be allowed to use as

witnesses. If this interval is not defined, assign β a large fresh number
dβ and an even larger number uβ(s) and halt the stage. If the interval
is defined, we have two cases. If β has no ball in its collection, attempt
to get a ball as described below in §7.1.3. If that attempt is successful,
or β already had a ball, let uβ(s) = uβ(s − 1) and let βa1 ⊆ fs; set
restraint, if not already set. If the attempt is not successful, increase
uβ and let βa0 ⊆ fs.

7.1.2. Override of restraint. At the end of the stage, any unrestrained
elements of W are enumerated into A. As usual, nodes are initialized
whenever the true path approximation passes to their left or terminates
above them. To begin the next stage, for each e and |β| = 2e + 1, if
Fs+1 � ψs(e) 6= Fs � ψs(e), enumerate all balls restrained with priority
β into A.

It is clear from the construction and the convention on use that if
ΨF (e)↑ infinitely-many times, we have A =♦ W .

7.1.3. Obtaining a ball for β’s collection. Note that since uβ(s) is non-
decreasing and βa0 ⊆ fs whenever uβ increases at s, if β ⊂ f then
βa0 ⊂ f if and only if lims uβ(s) = ∞, which is if and only if there is
no permanent ball in β’s collection.

Define the set

Gβ = {γ : |γ| odd & (γ−)a0 = γ ⊂ β & Cγ = Cβ & jγ = jβ},
predecessors of β that play analogous roles for other Nj,C requirements.
For i = 0, 1, let Gi

β = {γ : γ ∈ Gβ & γai ⊆ β}. For γ ∈ G0
β,

let Lγ = Ŝγ ∩ 〈zγ〉, and for γ ∈ G1
β let Lγ = P≤uγ ; Lγ contains the

elements γ will never use as witnesses (“ever” is from β’s perspective;
if uβ changes for some γ in G1

β, β will be initialized). If Gβ 6= ∅ let
Wβ = Cβ ∩

⋂
{Lγ : γ ∈ Gβ}, and otherwise let Wβ = Cβ.

We take the ball x for β’s collection under the following conditions:

• x enters P≤uβ
− P≤dβ

at stage s;
• x enters Wβ at stage t ≥ s;
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• x is in S̃β, where here stage of entry is unimportant;
• x is not in A (yet).

We may take any such ball, which may result in theft from a lower-
priority requirement (but only one with a different j or C).

7.1.4. Verification. Assume for Lemmas 7.3 and 7.4 that ΨF is total.
In that case, for any e there is a stage after which ΨF (e) never diverges
and hence does not cause initialization.

Lemma 7.3. If β = αa0 ⊂ f never gets a permanent witness, S̃β is
♦-c mod A.

Proof. Assume β never gets a permanent witness, meaning βa0 ⊂ f
(i.e., uβ →∞). By induction, assume S̃γ is ♦-c mod A for all γ ∈ G0

β,

so
⋃
{S̃γ : γ ∈ G0

β} is a ♦-split of Cβ that is ♦-c mod A: its ♦-splitting

partner is Wβ, witnessed by
∨
{〈zγ〉 : γ ∈ G0

β} ∨
∨
{P≤uγ : γ ∈ G1

β},
and its ♦-complement is the intersection

⋂
{Rγ : γ ∈ G0

β} of the ♦-

complements of the S̃γ, witnessed by the join of their witnesses. It is

enough to show Wβ ∩ S̃β is ♦-c mod A, because S̃β ∩
∨
{S̃γ : γ ∈ G0

β}
is ♦-c mod A by

⋂
{Rγ : γ ∈ G0

β} ∨ Ŝβ.
Assume dβ is never reset after stage t, and for all δ, if δ <L β

or δ ⊂ β and δ ever has a permanent member, it has one by stage
t (so no one steals from β at or after stage t). Let x /∈ P≤dβ

and
wait for a least stage s ≥ t such that x ∈ P≤uβ(s) (by assumption,

uβ → ∞). If x enters Wβ it must later enter Ŝβ or A; otherwise we
would take it for β’s collection and have a permanent member. Hence
x ∈ (Wβ∩S̃β)−A if and only if x ∈ ((Wβ∩S̃β)−A)[s]. To demonstrate

Wβ ∩ S̃β is ♦-c mod A, at the same stage s if x /∈ ((Wβ ∩ S̃β) − A)[s]

take all y ∈ 〈x〉 such that 〈y〉 ∩ Wβ ∩ S̃β[s] = 0 and put y into

an ideal Z. Z is a ♦-complement of Wβ ∩ S̃β mod A, witnessed by
P≤dβ

∨
∨
{〈zγ〉 : γ ∈ G0

β} ∨
∨
{P≤uγ : γ ∈ G1

β}. �

Lemma 7.4. If β has a permanent witness x, Nβ = Nj,C,S̃, ~X is satisfied

via ~X failing to witness ϕPj
(A, ~U, ~Bj,C , S̃).

Proof. This proof is identical to that in [6] §5.1.6–10, presented in a
condensed form below. If x is in C but not S, β will win with the
default “down and left” strategy, because Q will not put x in any U -
set, but ~X will want it in U3. However, we cannot know that a ball is
not in S, so we always move x according the four cases below. Multiple
iterations may be required; e.g., when x is in r`

1 on Pj we may have to

move it left from multiple b2-nodes in Pi to ensure ~X and Q want x in
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different U -sets. To say a ball is “in” a node p on Pi or Pj means it is
in Dp or Xp, respectively. To say a ball is “targeted for” a node p on
Pj means it is in Bj,C,p, hereafter referred to as Bp: all B ideals below

are elements of ~Bj,C , not ~BS. As a reminder, the Q strategy obeys ~BS

in building ~D and ~U ; on Pi our only control is the direction of descent
from bk2 nodes. On Pj we build the BLUE strategy ~Bj,C , which ~X must
respect, and hence have control over essentially everything except the
direction of descent from bk2 nodes. We do not remark on winning via
~X failing to respect ~Bj,C .

(1) x is below b0 on Pi while it is still in b0 on Pj.
Strategy: Move x in Pj opposite to how it moved in Pi. In this case,

on Pi x will be in either b1 or in some node b02 or below. If it is in b1 Q

puts it in U0, so enumerate x into Bb12
to force ~X to enumerate x into

Xb12
; ~X will then want x either outside all U sets or in one different

from U0. If x is in b02 or below, Q will not enumerate it into U0, so

enumerate it into Bb1 to force ~X to enumerate it into Xb1 and want it
in U0.

(2) x is in b`2 on Pi and not also in or targeted for b`
′

2 in Pj for some
`′ ≤ j.

Strategy: If x is in b0 on Pj, we are in case (1). If x is in b1, b5, b4,

or b`
′

3 on Pj, ~X will never want it in U1, so we enumerate x into Dr`
1

so

Q will put it into U1. If x is in Xr`′
1
, so ~X wants it in U1, enumerate

x into Dr`
2

to keep it out of U1. If x is in Xr`′
2
, enumerate it into Bb`′

3

so ~X will be forced to add it to Xb`′
3

and hence want it to be in U2.

Enumerate x into Dr`
1

so Q will enumerate it into U1.

(3) x is in r`
2 in Pj (the remaining “internal” node type, which we

control descent from) and not also in r`′
2 in Pi (which we do not control

descent from).
Strategy: If x is in b1, r

`′
1 , b4, or b5 on Pi, and hence Q wants it

out of U2, enumerate x into Bb`
3

so ~X will want it in U2. If x ∈ Db`′
2
,

enumerate it into both Bb`
3

and Dr`′
1

so ~X wants it in U2 and Q wants

it in U1. If x ∈ Db`′
3
, enumerate x into Bb`+1

2
(which is b4 if ` = j); if

this is b4 we are done because ~X wants x in U3, if anywhere, and Q
wants x in U2.

If x is in Db0 , enumerate it into Bb`
3

and wait; if x later enters Db02

(by the action of BLUE) enumerate it into Dr0
1

so ~X and Q will want
it in U2 and U1, respectively.
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(4) Not case (1)–(3).
Strategy: In this case we know that x starts on Pj before Pi, when-

ever x ∈ Xr`
2
x is also in Dr`′

2
for some `′ ≤ i, and whenever x ∈ Db`

2

either x ∈ Xb`′
2

or x ∈ Bb`′
2

(and hence is targeted for b`
′

2 ) for some

`′ ≤ j. We assume all along that we do not win in an easy way by
RED and BLUE failing to coordinate their attacks against us.

That x starts on Pj first means x enters Bb02
before x enters Db02

.
Then x enters Dr0

2
before x enters Xr0

2
, and x enters Bb12

before x
enters Db12

. By induction this continues until we hit the end of one of

the patterns; i.e., until x enters Dbk+1
2

, k = min{i, j}.
If k = j, Bbk+1

2
= Bb4 , the second-to-last node in Pj, butDbk+1

2
6= Db4 .

We are in case (2) above, after all.
If k = i, Dbk+1

2
= Db4 , the second-to-last node in Pi, and Bbk+1

2
6= Bb4 .

Q can only add x to U3, so we make sure ~X wants x in U1 or U2 instead:
we know RED must move x downward in Pj. If RED moves x right

into Xrk+1
1

~X wants x in U1. If RED moves x left into Xrk+1
2

we take

over and enumerate x into Bbk+1
3

to force it into Xbk+1
3

and hence make

~X want x in U2. �

Lemma 7.5. All R〈p,q〉 are met.

Proof. As in the original Friedberg Splitting Theorem, if X is a ♦-
Friedberg split of Y and Ie ↘ Y 6=♦ 0, then Ie ↘ X 6=♦ 0 also.

Since W̃ is ♦-nc mod A, we must have Ie ↘ W̃ 6=♦ 0 for all Ie 6=♦ 0
(see Lemma 4.6) and hence the same for S and W (the removal of the
principal ideal W−1 does not impact this). Since no balls in Ip ↘ X
are off-limits to R〈p,q〉 except those in 〈mq〉 and those enumerated into
A while ΨF � (〈p, q〉 + 1) settles – a principal collection – R〈p,q〉 will
eventually find the permanent witnesses it needs. �

Since Lemma 7.3 shows that Nj,C,S̃, ~X gets a permanent witness x

unless it is satisfied by S̃ being ♦-c mod A, Lemma 7.4 shows we
can win Nj,C,S̃, ~X with x while meeting the global requirement Q, and
Lemma 7.5 shows all R〈p,q〉 are met, this completes the proof of the
theorem. �

Recall that Theorem 6.1 constructs a BLUE strategy ~Be, for e in-
dexing ~U , P , A, and W , such that the existence of a ♦-split S of W
such that S is ♦-nc modulo A and ϕP(A, ~U, ~Be, S) is equivalent to the

realization of P by ~U,A, and W . All theorems at hand are uniform,
and hence we may apply Theorem 6.1 in each split W〈i,n〉, using ~Be
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for e indexing ~U〈i,n〉, Pi, A〈i,n〉, and W〈i,n〉, where e is obtained by the
Recursion Theorem. We obtain the following result.

Corollary 7.6. Let W̃ be a c.e. ideal built as in Proposition 4.4, and

W a ♦-Friedberg split of W̃ . Let ΨF be a functional. Effectively in i
and W , there exist A and ~U such that

(i) if ΨF is total, ~U , A, and W realize Pi (and all components of ~U
are contained in W ).

(ii) if ΨF is partial, A =♦ W .

Furthermore, for all j 6= i and for all c.e. ideals C, the sets ~U , A, and
C do not realize Pj. Moreover, a witness ~Bj,C to nonrealization can be
found effectively from j and C, with all components contained in C.

7.2. Finishing up. A and ~U are the join of their component pieces
constructed within each W〈i,n〉, and within W−1 in the case of A.

Lemma 7.7. A ≤T F .

Proof. W̃ is computable and contains A. If x ∈ W̃ , x will eventu-
ally enter some W〈i,n〉 or W−1. Within W−1, A is Turing-equivalent
to F . Within W〈i,n〉, by §7.1.2, if x enters at stage s either it is put
into A immediately, or it is restrained out of A with priority β, where
|β| = 2e + 1. In that case, x enters A if and only if F � ψs(e) changes
after stage s. �

Lemma 7.8. For all i, mi ∈ J ⇐⇒ ∃Y (~U,A, Y realize Pi).

Proof. As all components of ~U are empty on W−1, realization is not
affected by how we construct A within W−1.

Note that when working within a single W〈j,n〉, A and A〈j,n〉 may be
exchanged without affecting either ♦-(non)complementation (by W〈j,n〉
being a split) or realization.

If mi ∈ J , then for some n, ΨF
〈i,n〉 is total, and by Corollary 7.6,

~U〈i,n〉, A〈i,n〉, and W〈i,n〉 realize Pi. Hence, by Lemma 5.4, ~U,A, and
W〈i,n〉 realize Pi and W〈i,n〉 is the required Y .

Now suppose mi /∈ J , and suppose for some Y , S v♦ Y is ♦-nc
mod A and witnesses that ~U,A, and Y realize Pi. By Lemma 4.5,

S ∩ W̃ is also ♦-nc mod A, and since W−1 is principal there must
be at least one 〈j, n〉 such that S ∩W〈j,n〉 is also ♦-nc mod A. Note

S ∩W〈j,n〉 v♦ Y ∩W〈j,n〉. Again by Lemma 5.4, ~U,A, Y ∩W〈j,n〉 realize
Pi with this S∩W〈j,n〉. However, if ΨF

〈j,n〉 is partial, this contradicts the

fact that A∩W〈j,n〉 =♦ W〈j,n〉 and hence S∩W〈j,n〉 must be ♦-c mod A.

If ΨF
〈j,n〉 is total (necessitating j 6= i), since U`∩W〈j,n〉 = ~U〈j,n〉,`∩W〈j,n〉,
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this contradicts Corollary 7.6 again, which says ~U〈j,n〉, A, and Y ∩W〈j,n〉
do not realize Pi. �

8. Definability and the main result

Finally we put together the defining formula.

Definition 8.1. Let ϕJ(A) be the Lω1,ω sentence “there exists an L-

interpretation ~U such that (∀i)[mi ∈ J ⇔ Pi ∈ JA,~U ].”

By Theorem 7.1, for all c.e. ideals F and all ideals J ∈ ΣF
3 there is

a c.e. ideal A ≡T F such that ϕJ(A). Conversely, by Corollary 6.11,
if ϕJ(A) holds J is ΣA

3 . As in [6], the coding is closed upward in the
sense that if B ≥T A and ϕJ(A) there is C ≡T B such that ϕJ(C).

Since for each fixed P , the statement P ∈ JA,~U is {⊆}-definable,

ϕJ(A) is invariant under automorphisms of G. Once again, ϕJ(A) is
an L(A) property.

Theorem 8.2. Let C = {deg(J) : J is a Σ0
3 ideal such that J ≥T 0′′}.

Let D be a subset of C that is upward closed in C. Then there is ϕD(A),
invariant under automorphisms of G, such that

(∀F )[F ′′ ∈ D ⇔ (∃A)[ϕD(A) & A ≡T F ]].

The proof is again a direct translation of the proof of Theorem 8.5
in [6], included for readability of the present paper.

Proof. Let ϕD(A) be the infinite disjunction of all ϕJ(A) where J is a
Π0

3 ideal with degree in D.
If F ′′ ∈ D there is a Π0

3 set J in the above disjunction such that J is
ΣF

3 , and hence, by Theorem 7.1, there is an A such that A ≡T F and
ϕJ(A).

Now suppose for some c.e. ideal F there is an A ≡T F such that
ϕJ(A) is in the disjunction ϕD(A). Then, by Corollary 6.11, J is ΣA

3 ,
and by definition of ϕD(A) it is also Π0

3. Hence J is ∆A
3 = ∆F

3 , so
J ≤T F

′′ and F ′′ ∈ D. �

We have the same corollaries, as well, using Corollary 3.6 to move
from G to EΠ. The first is really the main result of this paper, and so
we will call it a theorem.

Theorem 8.3. For all n ≥ 2, the highn and non-lown c.e. degrees are
invariant over EΠ.

Proof. Let D = {a′′ : a is a highn (non-lown) c.e. degree}. �

Corollary 8.4. If F is a class of c.e. degrees such that if a ∈ F and
a′′ ≤ b′′ then b ∈ F , then F is invariant over EΠ.
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Proof. Let D = {a′′ : a ∈ F}. �

Corollary 8.5. If a′′ > b′′ then there is some A ∈ a that is not
automorphic to any B ∈ b.

Proof. Let D = {d′′ : d ≥ a}. There is some A ∈ a such that ϕD(A),
but if B ∈ b then ¬ϕD(B), so A is not automorphic to B. �

9. Final notes

9.1. General notes on translation. The present paper is the second
to use methods from the c.e. sets within G or G♦. It seems likely more
of the wealth of results for the c.e. sets may be transferred to the Π0

1

classes in this way, so we set down some rules of thumb.
Most translation is direct, with sets becoming ideals and union be-

coming join. The proofs in this paper go through nearly identically,
modulo the extra parameter in the requirements used to make working
mod principal explicit. Significant or nonuniform changes stem from
the dependence between elements of ideals and the fact that an ideal
need not ♦-split M even if its splitting partner were allowed to be of
arbitrary complexity. The dependence of elements means x ∈ W in E
may stay x ∈ W or become 〈x〉 ∩W 6= 0 in G, and x > k may become
x B mk or x /∈ P≤k. For example, condition (ii) for enumeration into

Sβ in Theorem 6.1 remains x ∈ S̃i,s ∩Ws as it was in Cholak and Har-
rington [6] Theorem 4.2, because we only care that Sβ is a subideal of

S̃i,s ∩Ws. However, in the splitting theorems (4.7 and 4.9), to choose
where to enumerate the next generating element b of B, we require
only 〈b〉 ∩ Ie 6= 0; to ensure the splits are disjoint we enumerate only
a disjoint generating set for B and therefore cannot guarantee any b
is a member of Ie, even for Ie 6=♦ 0. The fact that ideals need not be
♦-complemented even in the lattice of all subideals ofM means in The-
orem 6.1 and Lemma 6.6 we build two ideals simultaneously to ensure
we have a complementary pair, whereas in the corresponding sections
of [6] (§4.1.3 and §7.1.5) they simply build one set, computably. It also

requires in Theorem 7.1 that W−1 be a principal subideal of W̃ rather
than a Friedberg split as it is in [6] §6.5.

9.2. Open questions. There are few open questions about degree in-
variance remaining. Known invariant classes in E which are not covered
by this work are the high degrees, {0′}, and the d-simple degrees, a de-
finable class that splits the low degrees (Lerman and Soare, [9]). In the
reverse direction, the array noncomputable (anc) degrees are known to
be invariant in EΠ (Cholak, Coles, Downey and Herrmann [5]) but not
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in E . As discussed in [13], however, the G♦ viewpoint appears inap-
plicable there: the Π0

1 classes that give the degree invariance are the
perfect thin classes, all of which are ♦-trivial in G.
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