Π_1^0 Class Tutorial Notes

Rebecca Weber, CCA 2006 — Gainesville

- 12. Scott proved any completion of PA F is such that the degrees recursive in F form a basis for Π_1^0 classes. Degrees of completions \subseteq degrees of consistent extensions is clear. Solovay did the rest. See Odifreddi, *Classical Recursion Theory*, p. 510–515.
- 16. \boldsymbol{a} is hyperimmune-free if each function $f \leq_T \boldsymbol{a}$ is majorized by some computable function g_f . Majorized: $\forall n, f(n) < g(n)$ (as opposed to dominated, which is a.e. n). Nonzero c.e. degrees are all hyperimmune.
- 19. $b \ll a$ means every infinite tree $T \subseteq 2^{\omega}$ computable in b has a path computable in a. So degree-related basis theorems are theorems asserting $0 \ll a$ for some a.

Arslanov: if $0 \ll a$ and a is a c.e. degree, then a = 0' (so since PA contains only paths >> 0, its low and c.e. paths are not the same).

Kučera: If $0 \ll a \leq 0'$, then there is a promptly simple degree $b \leq a$ (and hence as p.s. degrees are noncappable (by other c.e. degrees), a must be noncappable).

24. Since the class of randoms has measure 1, all positive-measure Π_1^0 classes must contain randoms. Converse is Kurtz's.

Schoenfield jump inversion: For any Σ_2^0 set $S \ge_T 0'$ there is a Δ_2^0 set A such that $A' \equiv_T S$. So not only is the jump of a Δ_2^0 set Σ_2^0 , every properly Σ_2^0 set is the jump of some Δ_2^0 set. Extend by requiring A live in a particular given Π_1^0 class; get as consequence every Σ_2^0 is the jump of some random Δ_2^0 .

26. Verifications: boil down to leaving dead ends on the tree longer.
(a) ⇒ (b): X ∉ [S] ⇒ (∃n, m)¬R(m, X ↾ n), so for any k ≥ m, n, X ↾ k ∉ T, hence X ∉ [T].
(b) ⇒ (c): X ∉ [T] ⇒ (∃n, m)φ_m(X ↾ n) = 0, so for any k ≥ m, n, get X ↾ k ∉ S,

(b) \Rightarrow (c): $X \notin [T] \Rightarrow (\exists n, m)\varphi_m(X \upharpoonright n) = 0$, so for any $k \ge m, n$, get $X \upharpoonright k \notin S$, hence $X \notin [S]$.

- 28. 1-reducible: $B \leq_1 A$ means there is a computable 1-1 function f such that $f(B) \subseteq A$ and $f(\overline{B}) \subseteq \overline{A}$. (i.e., $x \in B \Leftrightarrow f(x) \in A$)
- 33. Note that the index set for computably continuous functions is itself Π_2^0 -complete.
- 40. The lemma follows from the fact that as we enumerate our ideal we could take each interval as a whole or as the union of several disjoint intervals given by appropriately long successors of the string.
- 41. Small subsets for the c.e. sets (\mathcal{E}): $A \subset_s B$ if $A \subset_\infty B$ and $\forall X, Y \in \mathcal{E}, X \cap (B A) \subseteq Y \Rightarrow Y \cup (X B) \in \mathcal{E}$.
- 42. Generally omit finite thin classes from the definition, and then get 'thin or finite' in the part about complementation.
- 43. Considered as trees, perfect classes are stretched-out copies of $2^{<\omega}$.

Array noncomputable, original definition: $(\forall e)(\exists n)(W_e \cap F_n = A \cap F_n)$ for some very strong array \mathcal{F} . Very strong array: $\mathcal{F} = \{F_n\}_{n \in \omega}$ sequence of nonempty finite sets that partition ω and strictly increase in size, such that there is a computable fwith $F_n = D_{f(n)}$ for D the canonical enumeration of finite sets.

Equivalent, easier definition: c.e. A is and if for all $g \leq_{wtt} \emptyset'$ there is a function $f \leq_T A$ which is not dominated by g (i.e., infinitely often f > g).

45. Theory of true arithmetic is $\text{Th}(\mathbb{N}, +, \times)$. Many-one reducible is 1-reducible as above (28) but f allowed to be non-1-1. An *interpretation* of theory T_1 in theory T_2 is simply a many-one reduction of T_1 to T_2 , defined in some natural way on T_1 .