
Markov Chains
Rebecca Weber, 2007

OSRIC How is’t, Laertes?
You cannot speak of this elegant

thimble”; and, when it grunted again, and put it more clearly,”
Alice replied very politely, “if I had seen the mobbled queen’
HAMLET ‘The mobbled queen’?
POLONIUS That’s very true, my lord.
HAMLET Then you live about her pet: “Dinah’s our cat. And

she’s such a very noble youth. Mark.
LAERTES What ceremony else?
PRIEST

Her obsequies have been so with us a story.”



What Is a Markov Chain?

A probability vector is a vector with nonnegative entries that add
up to 1. A stochastic matrix is a square matrix whose columns are
all probability vectors.

A Markov chain is a sequence of probability vectors x0, x1, x2, . . .
together with a stochastic matrix P such that

x1 = Px0, x2 = Px1, . . . , xn+1 = Pxn, . . .

What can these mean? Essentially, they represent a series of states
of a system and a uniform way to change from one state to the
next. The important part of the set-up is that wherever you
happen to be, you get to the next step in exactly the same way.



An Example

We might imagine a laboratory setup where a lab rat has three
levers available to it. Lever I results in a mild electric shock. Lever
II makes a loud noise. Lever III causes a piece of food to appear.
Originally the rat has equal probability of choosing each of the
three levers.

If it chooses lever I, it has only a 10% probability of choosing that
lever the next time. If it chooses lever II, it has a 25% probability
of choosing that lever the next time. If it chooses lever III, it has a
80% probability of choosing that lever the next time. In each case
the probability of choosing the remaining two levers is equally split.

How do we represent this as a Markov chain?



Example, Continued

We are making the simplifying assumption that what the rat does
next only depends on the most recent lever pressing – no
longer-term memory.

The nth state vector represents how likely it is that the rat presses
each lever in the nth round. Therefore,

x0 =

(
1

3
,
1

3
,
1

3

)
.

The next time, we have a linear combination of vectors. A third of
the time, the rat will press lever 1 and the next vector will be
(0.1, 0.45, 0.45). A third of the time, it will press lever II and the
next vector will be (0.375, 0.25, 0.375). The remaining third of a
time it will press lever III and the next vector will be (0.1, 0.1, 0.8).



Example, Part 3

We want to take the weighted average of those vectors, the linear
combination with weights corresponding to the entries in the
previous vector. In other words, we want the matrix-vector product 0.1 0.375 0.1

0.45 0.25 0.1
0.45 0.375 0.8

 1/3
1/3
1/3

 =

 0.18975
0.264

0.53625


This gives the linear combination we want, and notice that the
weights will always be the probability vector from the previous step
and the vectors being combined will always be the columns of the
matrix above. That is, that matrix is the stochastic matrix for this
Markov chain.



Return of Son of Example

What are the rat’s probabilities of choosing each of the three levers
on its third press? On its fourth press? We multiply x0 by the
stochastic matrix to get x1, then again to get x2, and so forth.

x1 =

 0.18975
0.264

0.53625

 , x2 =

 0.1716
0.205
0.6134

 , x3 =

 0.1554
0.1898
0.6448


On press 3, x2 is the appropriate vector. The rat has a more than
60% chance of pressing the food lever, and about a 17% and 20%
chance of pressing the shock and noise levers, respectively. On
press 4 the food probability has gone up a little to almost 65%,
and the others have dropped to about 15% and 19%.
In fact if you keep multiplying you find the vectors start looking
very much the same, approximately (0.148, 0.177, 0.665).



Steady-State Vectors

The way the state vectors in our example seem to home in on a
single vector is neither imaginary nor an artifact of the example.

A stochastic matrix P is regular if some power of P contains only
strictly positive entries.

Stochastic Matrix Theorem: If P is a square regular stochastic
matrix, there is a unique vector q such that Pq = q. This q is
called the steady-state vector (or equilibrium vector) for P.
Furthermore, is x0 is any initial state, and the Markov chain {xk}
is generated from x0 by P, then {xk} converges to q as k →∞.



Finding Steady-State Vectors

To find an equilibrium vector, notice that Px = x = Ix can be
solved as (P − I )x = 0. We know how to solve for x in that case,
obtaining the null space of P − I . Within that null space, if P is
regular, there will be a probability vector (note 0 is not a
probability vector). That probability vector is q.

For our example,

P − I =

 −0.9 0.375 0.1
0.45 −0.75 0.1
0.45 0.375 −0.2

 .



Finding Steady-State Vectors II

Our P − I reduces to −0.45 0 0.1
0 −0.5625 0.15
0 0 0

 and then to

 1 0 −2/9
0 1 −4/15
0 0 0

 .

Hence the null space is spanned by the vector (2
9 , 4

15 , 1). Find a
scalar multiple of that which is a probability vector:
c(2

9 + 4
15 + 1) = 1 when c = 45

67 , so we take q = (10
67 , 12

67 , 45
67).

One could check that Pq = q. If we write q in decimals, we get
(0.149, 0.179, 0.672), very close to the (0.148, 0.177, 0.665) that
appeared from computation to be the steady state (most likely
working the example with 0.33 instead of 1

3 made the difference).



Text Generation

One can create toys with Markov chains to generate nonsense or
parody text. The title slide is from “Alice in Elsinore”, generated
by a Markov algorithm from the texts of Alice in Wonderland and
Hamlet.

Running that algorithm on a single text will generate something
that cosmetically or stylistically resembles the original text, but
upon reading reveals itself to have nonsensical twists and turns
(this may or may not differentiate it from the original).



How Does It Work?

The pieces we are working with are n-tuples of words found in the
source text. Suppose we are working with pairs (2-tuples) and the
following text, ignoring punctuation.

I scream, you scream, we all scream for ice cream!

Then our 2-tuples are, in order of appearance:

I scream, scream you,
you scream, scream we,

we all, all scream,
scream for, for ice,

ice cream

We could also wrap around at the end, adding one more pair.



The Stochastic Matrix

A probability vector has entries corresponding to the tuples, so in
our example it would be a vector in R9 (or R10 with wrap-around).

The stochastic matrix represents the probability for each possible
word wn+1 if the current n-tuple of words is w1,w2, . . . ,wn. It
does so by assigning a probability of 0 to each n-tuple that doesn’t
begin w2, . . . ,wn, and assigning probabilities to the tuples that do
begin appropriately according to their frequency in the text.

[Technical note: the probability is the number of times the
(n + 1)-tuple w1, . . . ,wn+1 appears divided by the number of times
the n-tuple w1, . . . ,wn appears. However, for our example we will
simply use the number of time w2,w3 appears divided by the
number of times w2 appears, because if we include w1 our hands
are tied: the only phrase we can produce is the original.]



Recombining Tuples

In our example the stochastic matrix will have a lot of zeros (it will
be sparse), because not many of the pairs overlap. In fact, almost
every column (each of which corresponds to one starting pair) will
be a column of the identity matrix, because there is only one word
that could follow. The columns corresponding to pairs ending in
“scream” will have nonzero entries in the rows corresponding to
“scream for”, “scream we”, and “scream you”, each with value 1

3 .

Here’s the algorithm: Start with a vector with a 1 in the first
position and 0s elsewhere (so the new text begins with the same
tuple as the original). Multiply by the stochastic matrix to get a
probability vector. Use a random value to pick the next tuple using
the new vector. Then discard that vector and start anew with a
vector that has a 1 in the position corresponding to the tuple you
just picked and 0s elsewhere.



A New Jingle

Since our matrix is simple, we can explain our procedure without
writing it out. Start with the pair “I scream”. Pick a random
number from 1 to 100: 41. This is between 33 and 66 so the next
pair is “scream we”. Now we’re fixed for a while: “we all”, “all
scream”. Now pick another random number: 11. This is below 33
so the next pair is “scream you”. Fixed for one pair: “you
scream”. Another random number: 71. This is above 66 so we
pick “scream for”. Now we’re fixed to the end: “for ice”, “ice
cream”. No pair begins with “cream” (unless we wrap around) so
we’ve hit a dead end.

What did we get? Inserting punctuation, the new phrase is

I scream, we all scream, you scream for ice cream!



A Better Example

Our toy example isn’t so exciting. Using the program that gave the
title slide text, a colleague of mine combined an early 20th century
cookbook with a text on semiotics. The output had to be
significantly culled, but yielded gems such as the following:

Make a cream of one paradigm (e.g. a particular
paradigm rather than a workable alternative was used in
a dripping pan; put into pie plates; grease the tops of
loaves over with butter. This will make it equal.

[In this recipe, the term “mango” refers to its
socio-cultural and personal associations (ideological,
emotional etc.). Roland Barthes argued that such paired
paradigms consist of an ‘unmarked’ and a tablespoon of
whole cloves, and nutmeg to taste.



A More Practical Application

How does Google decide which webpages should show up on page
1 of your search results and which on page 10?

In this paper, we have taken on the audacious task of
condensing every page on the World Wide Web into a
single number, its PageRank.

Page, Brin, Motwani, and Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Stanford Technical Report,
1999.



Setting up a Matrix

PageRank begins with a matrix A with rows and columns
corresponding to webpages (row i and column i both correspond
to the same page). The entries are determined by whether there is
a link from the row page to the column page, and how many links
are on the row page.

Let A = [auv ]. If there is no link from page u to page v , auv = 0.
Otherwise, let nu be the total number of pages that u links to, and
set auv = 1/nu.

Dividing by the number of links on the page decreases the effect of
pages that are nothing but lists of links, which might otherwise
artificially inflate a page’s rank.



Using the Matrix

The PageRank vector r has as entries the ranks of every webpage.
It is the equilibrium vector of the matrix A.

Why the equilibrium vector? We would like a page that itself has
high rank to share that high rank with the pages it links to (having
a link on the main Dartmouth website should count for more than
having a link on the linear algebra course website). We do this by
taking powers of A until the multiplication no longer changes the
ranks of webpages.



Technical Issues

I The matrix A is not necessarily a stochastic matrix to begin
with. To make sure the total rank of all pages stays constant
(e.g., stays at 1 so the vector r is a probability vector) we must
multiply by a scaling factor c , so r actually satisfies cAr = r.

I Technical problems are introduced by circular pointers (say,
two webpages that point to each other but nowhere else) and
dangling links (links to pages which have no outgoing links, or
to pages Google has not downloaded yet). These are fairly
straightforward to solve.

I Most entries of A will be 0. This means much storage space is
saved by remembering not A, but instead just its nonzero
entries and their positions.



More Technical Issues

I The equilibrium vector of this matrix is found by multiplying
repeatedly by the matrix, rather than finding a probability
vector in the null space of P − I . This is for three reasons:

1. Because the matrix is very sparse, multiplication is quicker
than solving the enormous system of equations.

2. An approximation of the rank vector is good enough for
Google’s purposes.

3. When Google updates their information, the matrix changes.
The previous rank vector is still a decent approximation to the
rank, so using it as the initial state and multiplying several
times by the matrix allows for a fast update of the rank vector.

I By assigning the link weights more cleverly than 1/nu, one
can get better results and decrease the ability of people to
artificially boost their pages’ rankings.



Resources

Text on title page is from
www.eblong.com/zarf/markov/alice in elsinore.txt

(about halfway down)

Main page: www.eblong.com/zarf/markov/

PageRank paper is available from
dbpubs.stanford.edu/pub/1999-66

A PageRank example: www.mathworks.com/company/
newsletters/news notes/clevescorner/oct02 cleve.html

www.eblong.com/zarf/markov/alice_in_elsinore.txt
www.eblong.com/zarf/markov/
dbpubs.stanford.edu/pub/1999-66
www.mathworks.com/company/newsletters/news_notes/clevescorner/oct02_cleve.html
www.mathworks.com/company/newsletters/news_notes/clevescorner/oct02_cleve.html


Markov Toys

Random Word Generator:
www.fourteenminutes.com/fun/words/

Mark V. Shaney text generator:
www.yisongyue.com/shaney/

Markov chains for secret messages:
www.zentastic.com/entries/200503031618.html

Random numbers obtained from www.random.org

www.fourteenminutes.com/fun/words/
www.yisongyue.com/shaney/
www.zentastic.com/entries/200503031618.html
www.random.org

